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Abstract

Neurons in the primate lateral prefrontal cortex (LPFC) flexibly adapt their
activity to support a wide range of cognitive tasks. Whether and how the
topography of LPFC neural activity changes as a function of task is unclear.
In the present study, we address this issue by characterizing the functional
topography of LPFC neural activity in awake behaving macaques performing

three distinct cognitive tasks. We recorded from chronically implanted multi-
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electrode arrays and show that the topography of LPFC activity is stable within
a task, but adaptive across tasks. The topography of neural activity exhibits
a spatial scale compatible with that of cortical columns and prior anatomical
tracing work on afferent LPFC inputs. Our findings show that LPFC maps of
neural population activity are stable for a specific task, providing robust neural
codes that support task specialization. Moreover, the variability in functional
topographies across tasks indicates activity landscapes can adapt, providing
flexibility to LPFC neural codes.

Keywords: Lateral prefrontal cortex, rhesus macaque, multi-electrode
electrophysiology, cognitive flexibility, functional maps, spatial scale, cortical

columns

1. Introduction

Flexibility is one of the defining properties of higher-order cognitive func-
tions supported by the primate lateral prefrontal cortex (LPFC). Unlike neural
populations in primary sensory areas, where activity is dominated by stimulus

s input, LPFC neurons flexibly adapt their activity according to rules, contextual
associations and feedback associated with different tasks, even when stimulus in-
puts are held constant (Duncan, 2001} [Freedman et al., [2001; Miller and Cohen)|
2001} |Lennert et al.l 2011} |Lennert and Martinez-Trujillo, 2013|). This flexibility
is shaped in part by the diversity of connections LPFC neurons receive, which

1 is more heterogeneous than for sensory neurons (Goldman-Rakic, |1988; |Fuster]
2015)). Because of their diverse connections, response profiles of LPFC neurons
often exhibit selectivity to mixtures of task features, e.g., firing maximally only
to a specific combination of rule, context and feedback (Rigotti et al.l|2013; [Fusi
et al.l [2016]).

15 The selectivity of individual LPFC neurons to different combinations of task
features creates unique challenges to understanding their functional organiza-
tion. In the visual cortex, individual neurons with preferences for similar stim-

ulus features typically assemble into locally connected populations, giving rise
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to functional organizations which can be spatially delineated using stimulus

2 mapping techniques (Wandell et all 2007). For instance, stimulating different

visual field locations (Brewer et al., [2002)), stimulus orientations (Fang et al.|
2022), or object categories (Bell et al., [2009; Bao et al., [2020)) reveals maps of

neural populations with distinct feature preferences in striate and extrastriate

cortex, respectively. The response profiles of these stimulus-tuned populations

»  persist over days, weeks and months (Margolis et all) |2012; McMahon et al.l

2014; |Cossell et all, |2015)), forming stable topographies with a columnar spa-
tial scale (Hubel and Wiesel, [1968; Tanakal 1996 detectable using recording

techniques such as multi-electrode arrays and functional magnetic resonance
jmaging (fMRI) (Brewer et al., |2002; |Yacoub et al.l 2008; Bell et al., 2009; Bao|
30 . However, it remains an open question whether LPFC exhibits task-
specific functional topographies (Markowitz et al., 2015; Masse et al.,|2017; Bul-|

lock et al., |2017; [Leavitt et al., 2018), and if so, whether these topographies are

stable over time (Driscoll et al., 2017; Muysers et al.,|2024), and have a spatial

scale similar to those of other cortical areas. Testing for task-specific topogra-
55 phies of LPFC activity in primates, i.e., 'task mapping’, has proven challenging

due to constraints on the complexity and diversity of the ’task space’ typically

sampled in a given experiment (Yang et al. [2019al). Primate electrophysiology

studies often probe only a single task, or task features which are not sufficiently
distinct from one another, and do not analyze session-to-session variability in
0 neural activity to characterize population stability.

If task-specific functional topographies exist in LPFC at a spatial scale
similar to sensory cortical areas, then this functional organization should be
detectable when mapping responses to different task features embedded in a
sufficiently diverse task space, and, replicable over time. Here we examined

s this possibility by acquiring multi-electrode array data from the LPFC of two
macaques who were each trained on three distinct cognitive tasks
2019; Roussy et al., [2021} |Corrigan et al., 2022). From these rich data, we were

able to perform task mapping of neural response preferences over a well param-

eterized set of different task feature combinations. The monkeys performed the
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so same set of tasks over test sessions spanning multiple days, allowing us to assess
the stability of task-tuned population responses over time.

We show that topographies of LPFC activity are task-specific and stable
within a task. We then demonstrate a columnar spatial scale of functional
organization, consistent across all three task-specific functional topographies,

ss  which recapitulates prior anatomical tracing work examining the afferent in-
put patterns of LPFC from ipsilateral associational cortices and contralateral
LPFC (Goldman-Rakic, [1984; |Goldman-Rakic and Schwartz, 1982} [Leichnetz
et all [1981). Our results indicate that the functional organization of LPFC
exhibits stable topographies of task-specific population activity, likely reflecting

o distinguishable mixtures of afferent sensory and cognitive stimulation.

2. Results

2.1. Topography of LPFC neural activity across time and tasks

The same two rhesus macaque monkeys (monkey B and monkey T) each

performed three cognitive tasks (see Figure [lh-c). The first task is an oculo-

s motor delayed response task (ODR) (Luna et al., [2019). The second task is a

visuospatial working memory task (VWM) deployed in a virtual-reality envi-

ronment with naturalistic scenes for stronger attentional engagement (Roussy

et al.|2021; Doucet et al.,|2016)). The third task is a context-dependent decision-

making task (CDM), which was also deployed in a virtual-reality environment

o (Corrigan et al. [2022). Altogether, these three tasks engage a wide spectrum of

cognitive functions, including working memory, visuospatial attention, context-
dependent decision making and motor planning.

We recorded the responses of neurons in layer I1/11T of LPFC areas 8A and

9/46, ventral and dorsal to the principal sulcus, using 96-channel multi-electrode

7 Utah arrays (see Supplemental Figure. Each array covered a 4 mm x 4 mm

cortical area with 10 x 10 electrodes (~0.4 mm spacing). Data were spike sorted

and action potential times were extracted and synchronized to task events. To

enable spatial mapping of response preferences across the array, we pooled units
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measured by the same channel by summing up their spiking activities. We did so

s after establishing that units measured by the same channel have similar response

preferences (see for details). The pooled activity reflects the activity of
subpopulations of neurons within the area covered by an array channel.

To characterize the spatial organization of prefrontal population codes, we

first computed task tuning profiles, one for each channel in each session in each

s task. Task tuning profiles are vectors that store the firing rates of a channel to

the experimental conditions. The time windows for estimating spike rates vary

from a few hundred milliseconds up to a few seconds (see |4.4| for details). These

time windows were determined based on task structure, monkey behaviour and

population decoding results. Next, we computed a channel-by-channel tuning

% similarity matrix (Figure[ll) for each array in each session in each task. Each el-

ement of the matrix represents the Pearson correlation of tuning profiles between

a channel pair. The matrix as a whole reflects the similarity of task tuning for

all channel pairs, thus capturing the functional topography of task-tuned LPFC

activity. For comparative purposes, we also analyzed trial-to-trial fluctuations

s about the trial averages that define the tuning profiles (see for further de-

tails). Topographies based on these spontaneous fluctuations, or residuals, are

expected to be consistent across tasks (Cole et all 2014} Kiani et al.l |2015]).

Results of subsequent analyses are consistent across monkeys and arrays.
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Figure 1: Comparing task-tuned functional topographies in LPFC across time
and tasks.

a) Oculomotor delayed response task (ODR). In this task, the monkeys fixated a point on the
screen. A cue showed up then disappeared. After a delay, the monkeys saccaded towards the
remembered target location.

b) Visuospatial working memory task (VWM). In the cue period, a visual cue showed up in
one of nine target locations in a virtual arena, then disappeared. After a delay, the monkeys
navigated towards the remembered target location using a joystick.

c) Context-dependent decision-making task (CDM). During the task, the monkeys navigated
through an X maze using a joystick. The texture of the corridor walls (wood or steel) indicated
the decision context, i.e., which coloured disk the monkey should choose at the bifurcation
to get a reward given the texture of the walls (e.g., if wood, choose orange; if steel, choose
green).

d) Tuning profile for an example channel in the ODR task. The 16 targets were grouped
into 4 quadrants based on their location in the retinotopic reference frame. We computed
trial-averaged spike rates for each quadrant during cue, delay and response epochs to estimate
the tuning profile for this channel.

e) Tuning profile for the same channel in the VWM task. We computed trial-averaged spike
rates for each of the 9 target locations during cue, delay, and response epochs to estimate the
tuning profile for this channel.

f) Tuning profile for the same channel in the CDM task. We computed trial-averaged spike
rates for each combination of decision contexts and goal configurations in time windows before
and after context onset, goals onset, and decision onset to estimate the tuning profile for this
channel. Configuration 1: colour associated with wood on the left-hand side; configuration 2:

colour associated with wood on the right-hand side.
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Figure 1:

g) Schematics for comparing the topography of task-tuned responses across time and tasks.
Tuning similarity matrices are shown for 2 example sessions in ODR, VWM and CDM tasks.
Elements of the matrices represent the Pearson correlation of tuning profiles between channel
pairs. We estimated the consistency of tuning similarity matrices across time within a task
(solid horizontal lines) and across tasks (dotted lines) to study how topography of task-tuned

responses changes across time and across tasks.

2.2. The topography of LPFC neural activity is stable over time but adaptive

100 across tasks

Examining the tuning similarity matrices, we found that the mean cross-
channel correlation (r) over sessions and tasks was 0.50+/-0.21 (mean+/-SD)
for monkey B (mB) and 0.434/-0.17 for monkey T (mT). In the residual sim-
ilarity matrices, the mean cross-channel correlation (r) over sessions and tasks

s was 0.08+/-0.04 for mB and 0.14+4/-0.08 for mT. To assess whether the func-
tional topography of LPFC neural activity is consistent over time (sessions) and
across tasks (ODR, VWM and CDM), we computed the average correlation of
the channel-by-channel similarity matrices across sessions within and between
tasks (Figure ) To control for array shifting across time, we only included

o sessions spaced apart no more than 20 days for within- as well as between-task
comparisons. Given that data for some tasks were acquired more than 20 days
apart, between-task comparisons are based on two out of three tasks for each
monkey (see for further details).

Over time, the consistencies of the task-tuned topographies were as fol-

us  lows: mB: VWM-VWM r = 0.43, mB: CDM-CDM r = 0.25, mT: VWM-VWM
r = 0.38 and mT: ODR-ODR r = 0.21). In all cases, the r values for within-
task consistencies were significantly larger than zero (p < 0.05, permutation
test, Figure ) More importantly, the within-task consistencies for task-tuned
topographies were significantly higher than those observed for residual topogra-

120 phies (mB: VWM-VWM ¢(54) = 3.97, p < 0.001, mB: CDM-CDM ¢(14) = 2.95,
p = 0.01, mT: VWM-VWM ¢(13) = 3.28, p = 0.006 and mT: ODR-ODR
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t(5) = 2.60, p = 0.05). Hence, over sessions of a given task, the topographies of
task-tuned responses are more consistent than the topographies of concurrent
trial-to-trial fluctuations in spontaneous activity.

125 Across different tasks, the consistencies of task-tuned topographies were as
follows: mB: VWM-CDM r = 0.11, mT: VWM-ODR r = 0.18. These consis-
tencies were significantly below their estimated noise ceilings, suggesting that
task-tuned functional topographies are not fully consistent across tasks even
when considering noise inherent to the data. Moreover, the r values quanti-

10 fying between-task consistency of task-tuned topographies were either signifi-
cantly lower than or not significantly different from those observed for residual
topographies (mB: VWM-CDM ¢(36) = —3.03, p = 0.005, mT: VWM-ODR
t(3) = —0.51, p = 0.64). Hence, between a given pair of two different tasks, the
topographies of task-tuned responses are less consistent than the topographies

135 of concurrent spontaneous trial-to-trial fluctuations in activity.

Our analyses suggest that task-tuned functional topographies in LPFC are
(1) stable across time within a task: neural populations that have similar tuning
on one day tend to have similar tuning on another day, and, (2) adaptive across
tasks: neural populations that respond similarly in one task do not necessarily

1o  respond similarly in another task.
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Figure 2: Task-tuned functional topographies in LPFC are stable across time but
adaptive across tasks.

a) Consistency of functional topographies across time within a task. The functional topogra-
phies are more consistent across time for task-tuned responses than for residuals. Results are
shown for the ventral array of monkey B in the VWM and CDM tasks (paired t-test, p < 0.05
uncorrected, black horizontal lines indicate significance). Error bars show the standard error
of the mean consistency of tuning similarity matrices across session pairs.

b) Consistency of functional topographies between tasks. The functional topographies are less
consistent between tasks for task-tuned responses than for residuals. Results are shown for
the ventral array of monkey B (paired t-test, p < 0.05 uncorrected, the black horizontal line
indicates significance). Furthermore, the between-task consistency for task-tuned responses is
significantly lower than the noise ceiling (t-test, p < 0.05 uncorrected, Vv indicates significance),
which is not the case for residuals. Grey horizontal line shows the noise ceiling. Error bars
show the standard error of the mean consistency of tuning similarity matrices across session
pairs.

¢, d) as in a, b), but for the ventral array in monkey T, using VWM and ODR tasks.

For both monkeys, the consistencies of functional topographies for task-tuned responses and
residuals are significantly higher than chance, both within- and between-tasks (channel per-

mutation test, p < 0.05, uncorrected, signiﬁcaﬁce not shown for simplicity).
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2.8. Linking the topography of LPFC neural activity to fine-grained spatial maps
Given that feature-tuned neurons are known to cluster in populations at
the spatial scale of cortical columns (Hubel and Wiesel, [1968; |Tanakal |1996;
Masse et al.l [2017)), the observed functional patterns of within- and between-
us  task consistency in LPFC (Figure [2) may be expressed spatially by stable clus-
ters of similarly tuned neurons with an adaptive task-dependent ’fingerprint’.
To quantify the degree of spatial clustering of channels with similar response
preferences on the array, we used the tuning profile as defined in Figure [Id-f,
in accordance with previous studies (Leavitt et al.| [2018} |Bullock et al., 2017}
50 |Arbuckle et al., 2020; |[King et al. [2019). From these tuning profiles, we then
computed a spatial autocorrelation function (ACF). A positive autocorrelation
indicates that channels spaced at a specified spatial distance have similar tun-
ing profiles, while a negative autocorrelation indicates that channels spaced at
the specified distance have dissimilar tuning profiles. Zero indicates no spatial
155 autocorrelation. We systematically varied the spatial distances and plotted the
spatial autocorrelation as a function of distance. At a distance of zero, the ACF
was set to 1 by definition. We then fitted a Laplacian function to the spatial
ACF for each array in each session in each task to capture the exponential de-
cay of the ACF as a function of distance and to quantify the spatial scale of
1o the functional organization. The spatial scale is estimated by the full-width-at-
half-maximum (FWHM) of the Laplacian function, which is the FWHM of the
2-dimensional kernel needed to smooth spatially independent tuning profiles to
yield the same degree of clustering we see in the data (Diedrichsen et al.,|2011]).
From the ACF's of both monkeys, we observed a positive autocorrelation up
65 to a distance of 1-2 mm across tasks (Figure ) The median of the FWHMs
across sessions and tasks is 341 4/- 105 microns (SD), suggesting the existence

of fine-grained clusters on the arrays.
To get an impression of the spatial structure of the tuning similarity on
the arrays, we next visualized the data using 2-dimensional (2D) multidimen-
o sional scaling (MDS). We converted the tuning profile correlations to correlation

distances, and applied 2D MDS. Channels were colour-coded based on their lo-

10
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cation in the 2D MDS space and projected back to the arrays (Figure ) The
MDS array maps confirm that the functional organization in LPFC is stable
across time within a task, as can be seen by the similarity between intra-task
s array pairs in Figurd3e. In contrast, LPFC functional organization is adaptive
across tasks, as evidenced by the dissimilarity of inter-task array pairs in Figure

B.
From the 2D MDS array maps, we also observed fine-grained spatial patterns
consistent with clustering of population activity according to distinct task-tuned
180 feature preferences. To explore whether these clusters become more pronounced
when smoothed according to the empirically derived cluster sizes from the fitted
Laplacians, we smoothed the 2D MDS maps using 2D Gaussian kernels whose
FWHM matches that of the fitted Laplacians. In all three tasks, smoothing the
2D MDS with its corresponding FWHM kernel revealed clusters of task-tuned
185 population activity similar to maps observed in other cortical areas (Figure )

(Brewer et al., [2002; [Fang et al., [2022; [Yacoub et al.| 2008]).

11
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Figure 3: Task-tuned functional topographies in LPFC are organized at a fine-

grained spatial scale.

a) Spatial autocorrelation functions (ACFs) for ODR, VWM, and CDM tasks. Solid lines

represent the ACFs for individual sessions in each task. Colours reflect the corresponding

arrays: light blue for monkey B ventral array, dark blue for monkey B dorsal array, and pink

for monkey T ventral array. Grey shaded areas show the width between two immediately

neighbouring channels (0.4 mm). Vertical dashed lines show the median full-width-at-half-

maximum (FWHM) of fitted Laplacian function across sessions.
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Figure 3:

b) Steps taken to visualize channel task-tuning profile similarity on the array. Channels with
similar task-tuning profiles are colour-coded similarly.

¢) MDS visualizations for monkey B dorsal array in all three tasks, two example measurement
sessions per task.

d) Array maps in c) after smoothing with 2D Gaussian kernels whose FWHMs match the

fitted Laplacian functions.

Our findings suggest that task-tuned LPFC responses are clustered at the
spatial scale of cortical columns. Prior anatomical tracing work on macaque
LPFC suggests that cortical columns in the principal sulcus have a width of

10 300 - 700 microns (Goldman-Rakic| [1984; |Goldman and Nautal [1977; Bugbee
and Goldman-Rakic, [1983)). We next asked what properties of cortical organi-
zation might shape this spatial scale. One possibility is that the afferent input
projections from different regions of the brain may exhibit a spatial scale of clus-
tering in the LPFC similar to that of the functional topographies observed in

15 the present work. This would suggest that the structural organization of long-
range inputs into LPFC shapes the functional topographies of its task-tuned
responses. To test this hypothesis, we acquired a structural connectivity map
representing the profile of afferent inputs to the macaque principal sulcus of the
LPFC from the contralateral principal sulcus through colossal fibres (i.e., the

20 black stripes), and from the ipsilateral parietal cortex through associational fi-
bres (i.e., the gaps interdigitated with the black stripes) (Goldman-Rakicl|1984).
The structural map overlaps the cortical patch measured with multielectrode
arrays in the current study (Figureldh). Because the connectivity map provided
coverage of a cortical patch which was larger than the 4 mm X 4 mm patch

2s  covered by the electrode array in the current study, we used a 4 mm X 4 mm
window to randomly sample 210 locations, thereby providing an unbiased es-
timate of the map’s intrinsic spatial frequency (Figure ) At each sample,
we down-sampled the map to 10 x 10 pixels (matching the spatial resolution

of the array) and computed the spatial ACF using the same strategy as de-
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20 picted in Figure [Bp. From these 210 samples, we observed that the mean ACF
of the afferent inputs into LPFC closely approximates that observed from the
functionally derived topographies in Figure [Bh (Figure [4{).

a b

Posterior CONVEXITY Anterior 1 anatomical tracing
+26

S
® —

\Va—

0.8 !
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0.4
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Fuous distance [mm]
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Figure 4: Linking task-specific functional topographies in LPFC to fine-grained
structural maps.

a) Anatomical tracing of white matter fibre inputs to macaque LPFC, adapted from (Goldman-
Rakic| [1984). LPFC receives inputs through contralateral colossal fibres of the principal
sulcus (PS; indicated by the solid black arrow) and ipsilateral association fibres from the
intraparietal sulcus (IPS; indicated by the white strike arrow), providing the neural basis for
interhemispheric integration. HRP = horeradish peroxidase, H3 — AA = tridared amino
acids.

b) Topographical input patterns of LPFC, adapted from (Goldman-Rakic, |1984). The black
dashed line represents the rim of the principal sulcus. The black stripes show the reconstructed
terminal fields of colossal fibres in the principal sulcus, reflecting inputs from the contralateral
principal sulcus. The square in red shows an example of the total 210 sampled cortical patches.
In a separate experiment, interdigitated white areas were shown to receive inputs from IPS.
¢) Examples of randomly sampled cortical patches from the reconstructed map in panel b).
Each sample has a coverage of 4 mm X 4 mm.

d) Grey lines represent the ACF's for each of the 210 randomly sample cortical patches. The
yellow, green and purple lines show the mean ACFs of task tuning across sessions for the

ODR, VWM and CDM tasks, respectively, for the dorsal array in monkey B.

3. Discussion

We characterized the functional topography, temporal stability, and spatial
a5 scale of task-tuned LPFC neural activity by analyzing array recordings from

awake behaving macaques performing a range of cognitive tasks (Luna et al.|
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[2019; [Roussy et all 2021 |Corrigan et al) 2022)). We show that the spatial

topography of task-tuned LPFC neural activity is stable across time within a
task but adaptive across tasks. The stability for task-tuned responses is higher

20 than for concurrent spontaneous fluctuations, indicating that the correlation
structure among LPFC neural populations is strengthened by task. We further
demonstrate that although all three tasks exhibit distinct topographies of task-
tuned activity, they converge on a common spatial scale compatible with that
of cortical columns. Finally, we show that this spatial scale is likely shaped,

»s in part, by the organization of afferent long-range inputs into the LPFC from
distinct cortical areas throughout the brain.

Progress on understanding the functional organization of primate LPFC has
been hampered by (1) the limited number of tasks sampled in typical mon-
key electrophysiology or human functional magnetic resonance imaging (fMRI)

x0  studies (Harel et al.l 2014; Bullock et al.| 2017 |Leavitt et al. 2018; [Yang et al.|
and (2) a disconnect between the study of structural and functional or-
ganization in LPFC (Goldman-Rakic, [1984; |Xu et al., [2022} |Kiani et al.| [2015;

Bullock et all [2017; [Leavitt et al., [2018)). Below we discuss these obstacles in

relation to the current study.

235 Across the three different tasks examined in this study, we noted that the
between-task consistency of LPFC topographies was lower for task-tuned re-
sponses than for concurrent spontaneous fluctuations in neural activity, but
still shared a significant portion of task-related variance. This shared variance
may be driven by similarity in cognitive demands across tasks, which at present

20 is difficult to define objectively. Future studies may benefit from generating
‘task ontologies’ sampled from a high-dimensional space consisting of diverse
but carefully parameterized task features. These task ontologies could then be
used to systematically vary the functional structure of the tested task space, e.g.,
similarity of two distinct tasks to one another or their additivity, thereby en-

x5  abling exploration of more computationally principled hypotheses about LPFC

function, including biased competition (Desimone and Duncan, 1995} Schmitz|

land Duncan| [2018)) and compositional coding (Duncan et al. 2017; [Yang et al.|
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2019Db)).
Our findings suggest that LPFC functional topographies are likely shaped
0 by the unique profiles of long-range afferent input (Goldman-Rakic) [1988; Xu
et al., [2022)), which yield preferences for distinct combinations of task features,
i.e., task tuning. The structural organization of a diverse repertoire of long-range
synaptic inputs into the LPFC (Goldman-Rakicl [1984) may therefore provide
the scaffolding for LPFC’s functional organization, by shaping the intrinsic net-
s work structure that task activation flows on (Cole et all 2016} |Xu et al.| [2022).
Future investigations examining fine-grained maps of LPFC task-tuning may ne-
cessitate multimodal measures of both LPFC functional and structural organi-
zation within the same animals. Several recent studies have laid the groundwork
for this critical line of inquiry using innovative techniques integrating functional
%0 MRI with LPFC micro-stimulation (Xu et all 2022) and diffusion MRI (Xu
et al.l 2020). Finally, our findings in macaques indicate that LPFC functional
topographies have a spatial scale that is accessible in humans with high-field
fMRI. Looking ahead, cross-species translational work leveraging macaque elec-
trophysiology and human fMRI to map fine-grained task information from LPFC

x5 population activity is within reach.

4. Methods

4.1. Subjects and ethics statement

We recorded LPFC neural activity in two male rhesus macaques (Macaca

20 mulatta, monkey B and monkey T, 10 and 9 years old) while they were per-
forming three different cognitive tasks across multiple measurement sessions. All
training, surgery, and recording procedures conformed to the Canadian Council

on Animal Care guidelines and were approved by The University of Western

Ontario Animal Care Committee.
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s 4.2. Behavioural tasks

4.2.1. Oculomotor delayed response (ODR) task
Figure illustrates the experimental setup of the oculomotor delayed re-
sponse task. Each trial began with the appearance of a fixation point at one of
16 predefined locations on a computer screen. Then a target was presented for
20 1000 ms before it disappeared. The monkeys were asked to maintain fixation
for a variable length delay period (1400 ms - 2500 ms, median = 1800 ms) and
upon extinction of the fixation point, make a saccade towards the remembered
target location to get a reward. More information on the ODR task can be

found in (Luna et al., [2019)).

w5 4.2.2. Visuospatial working memory (VWM) task
Figure[Ip illustrates the experimental setup of the visuospatial working mem-
ory task, which took place in a virtual reality environment. Within the virtual
arena in the environment, targets were arranged in a 3 x 3 grid. The time
needed to navigate between adjacent targets was ~0.5 s. During the cue period,
20 a visual cue (red rectangle) was presented in one of the nine target locations
for 3 seconds, then disappeared. After a 2-second delay, the monkeys navigated
towards the remembered target location at a constant speed using a joystick.
Upon reaching the correct target, the monkeys received a reward. More infor-

mation on the VWM task can be found in (Roussy et al., [2021)).

05 4.2.3. Context-dependent decision making (CDM) task
Figure illustrates the experimental setup of the context-dependent de-
cision making task, which was also deployed in a virtual reality environment.
The task took place in a double ended Y maze, also termed ”X maze” as in
(Doucet et al., |2016; |Gulli et al., |2020). The monkeys navigated through the X
w0 maze using a joystick. The texture of the walls, being brown ”"wood” or dark
grey ”steel”, indicated which coloured disk the monkeys should choose at the

bifurcation to get a reward. In other words, the decision context was specified
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by the texture of the walls. We will refer to the coloured disks as goals in sub-
sequent text. More information on the CDM task can be found in (Corrigan

a5 et al., 2022)

4.3. Neural recordings

Two 96-channel Utah arrays (4 mm X 4 mm coverage, 10 x 10 electrodes,
spaced at 0.4 mm, 1.5 mm in length) (Blackrock Microsystems) were chronically
implanted in the left LPFC in each animal. They were located anterior to the

si0 - arcuate sulcus and on the ventral and dorsal side of the posterior end of the
principal sulcus, targeting layers IT1/TII of cortical areas 8A and 9/46. See
for further details on array placement.

Neural data were recorded using a Cerebus Neural Signal Processor (Black-
rock Microsystems). The neural signal was digitized (16 bit) at a sampling rate

a5 of 30 kHz. Offline sorting was done with the Plexon Offline sorter (version 4.5.0,
Plexon Inc.). Spike sorting for the ODR task was carried out by RL, for the
VWM task by MR, and for the CDM task by BWC.
Both monkeys performed multiple sessions for each task. Sessions were ac-
quired on separate days. Monkey B performed 4 sessions for the ODR task,
a0 11 sessions for the VWM task, and 6 sessions for the CDM task. Monkey T
performed 4 sessions for the ODR task, 8 sessions for the VWM task, and 9 ses-
sions for the CDM task. One session was excluded from analysis in the VWM
task for monkey T due to low trial numbers across experimental conditions. See
.2 for further details on the measurement sessions. For all tasks, eye positions
»s  were monitored using SR Research EyeLink 1000, at a sampling rate of 500 Hz.

The dorsal array in monkey T was excluded from analysis due to low signal-

to-noise ratio of recordings at the time of the experimental sessions, which makes

it difficult to map the topography of the array.
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4.4. Neural data analysis

w0 4.4.1. Computing task tuning profiles
To enable spatial mapping of response preferences across the array, we pooled
units recorded from the same channel by summing up their spiking activities.
We did so after establishing that units recorded from the same channel have
similar response preferences (see for details). The pooled activity reflects
15 the activity of subpopulations of neurons within the area covered by an array
channel. This area has an estimated diameter of 300 microns based on the
impedance of the electrodes.
For each channel in each session in each task, we first computed trial-specific
spike rates for each experimental condition and applied a square root transfor-
s mation to the spike rates to account for the Poisson-like increase of variability
with increasing mean firing rates (Yu et al., |2009; |Arbuckle et al., [2020). We
next computed trial-averaged spike rates by averaging across trials of the same
experimental condition, which yielded a task tuning profile for each channel.
More specifically, in the ODR task, the tuning profile for a channel was
us defined as the trial-averaged spike rates for the 4 quadrants (16 targets were
grouped into 4 quadrants based on their location in the retinotopic reference
frame, labelled 1-4 starting from bottom left, clockwise) during cue (1000 ms),
delay (1400 ms - 2500 ms, median = 1800 ms), and response (first 500 ms)
epochs. In the VWM task, the tuning profile for a channel was defined as
30 the trial-averaged spike rates for the 9 target locations during cue (3000 ms),
delay (2000 ms), and response (first 500 ms) epochs. In the CDM task, the
tuning profile for a channel was defined as the trial-averaged spike rates for
the combinations of decision contexts and goal configurations in time windows
before and after context onset (50 ms before, 600 ms after), goals onset (500
s ms before, 300 ms after), and decision onset (500 ms before, 500 ms after).
Goal configuration refers to the location of the disk colour that is associated
with wood. If the colour associated with wood is on the left-hand side at the

bifurcation, the trial is in configuration 1, otherwise configuration 2.
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We then subtracted out the mean firing rate across all experimental condi-

w0 tions. The mean-centred tuning profile reflects the modulation in firing rate by
the experimental conditions, providing a rich characterization of channel tun-

ing in each task. The time windows used for computing tuning profiles were
based on trial structure, monkey behaviour, and neural population decoding
results. Results of subsequent analyses do not critically depend on the exact

365 time windows used.

4.4.2. Computing the topography of task-tuned activity
For each array in each session in each task, we computed a channel-by-
channel tuning similarity matrix. Elements in this matrix reflect the Pearson
correlation of tuning profiles between channel pairs. The matrix reflects the sim-
s ilarity of task tuning for all channel pairs, thus capturing the similarity structure
of tuning across the array. As such, it provides the basis for mapping of tun-
ing similarity across the cortical sheet. This approach can be used to study
functional topography (Kiani et al., [2015; [[to and Murray|, 2023). Importantly,
the tuning similarity matrices abstract from the specific experimental condi-
a5 tions used in a single task, which enables comparison of functional topographies

between tasks.

4.4.8. Computing the topography of spontaneous activity
For comparative purposes, we also analyzed trial-to-trial fluctuations about
the trial averages that define the tuning profiles. Topographies based on these
;0 spontaneous fluctuations are expected to be consistent across tasks (Kiani et al.|
2015; (Cole et all [2014)). We partitioned the measured spiking activity in two
components: task-tuned activity and spontaneous activity or residuals. For
each channel in each session in each task, we computed task-tuned activity by
replacing the firing rate of each trial with the mean firing rate across trials of
s the same experimental condition. This corresponds to a tuning profile where
the trial-averaged spike rate for each condition is repeated as many times as

the number of trials for that condition. We computed residuals by subtract-
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ing out the task-tuned activity from the measured spiking activity. We then
computed topographies for task-tuned activity and residuals as described in the
0  previous section, but replaced tuning profiles by task-tuned or residual activity
vectors. Results reported in Figure [2 are based on the task-tuned and residual

topographies, allowing for a direct comparison between the two.

4.4.4. Assessing the consistency of functional topographies across time and across
tasks

305 To assess whether the functional topographies are consistent across time and
across tasks, we computed the Pearson correlation of tuning similarity matrices
across session pairs within and between tasks (see Figure ) Because the
matrices are symmetric, we computed correlation coefficients using the upper
triangular vector of the matrix. The consistency of functional topographies

w0 within and between tasks was estimated as the mean across session pairs. To
control for array shifting across time, we only included sessions spaced apart
no more than 20 days for within- as well as between-task comparisons. Given
that data for some tasks were acquired more than 20 days apart, between-task
comparisons are based on two out of three tasks for each monkey (see for

ws  further details).

To determine whether the estimated consistencies are significantly higher
than chance, we permuted channel locations on the array to simulate the null
hypothesis of no consistent spatial organization. We performed 1,000 permuta-
tions, each yielding an estimate of our test statistic under the null hypothesis.

a0 If the actual consistency fell within the top 5 percent of the simulated null dis-
tribution, we rejected the null hypothesis of no consistent spatial organization.
For between-task consistencies, we did not only test if they were higher than
expected for no consistent spatial organization, we also tested if they were lower
than expected for a fully consistent spatial organization. We did so by esti-
a5 mating a noise ceiling for between-task consistencies. For each task pair, the
noise ceiling is defined as the geometric mean of the within-task consistencies,

which reflects the maximum expected between-task consistency given the noise
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in the data (Vul et al., 2009). When estimating the noise ceiling, within-task
consistencies are based on sessions that are also involved in between-task com-
a0 parisons. We compared the observed between-task consistencies against the
noise ceiling using a one-sided one-sample t-test across session pairs. We com-
pared consistencies of task-tuned and residual topographies using a two-sided

paired-samples t-test across session pairs.

4.4.5. Assessing the spatial scale of functional topographies

s To assess the spatial scale of the functional topographies, we computed spa-
tial autocorrelation functions (ACFs) of channel tuning profiles on the array. We
used global Moran’s I as a measure of spatial autocorrelation (Moran, [1950),

which is defined as:

_ N Ziijij(Xi_X)l(Xj—X)
S w5 (Xi = X) (X - X)

where N is the total number of channels on the array; X; is the mean-centred

1

s tuning profile for the i*"* channel; X ;j is the mean-centred tuning profile for the
4t channel; X is the mean-centred tuning profile averaged across all channels;
and w;; is either 1 or O (if channel ¢ and channel j are spaced within a specified
spatial range, w;; equals 1; otherwise 0).

The numerator estimates the covariances of tuning profiles between channel

45 pairs spaced at a certain distance. The denominator estimates the variances of
tuning profiles across all the channels on the array. To account for the fact that
some channels appear more frequently than others in the covariance estimates,

the variance can be estimated using the following formula as in (King et al.|

2019):
V0 2w (X = X)X = X) X2, 30wy (X — X)(X; — X)
DY j Wij
440 Using this formula for estimating the variance ensures that I is bounded

between -1 and 1. A positive I indicates that channels spaced at the given
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distance have similar tuning profiles; a negative I indicates that channels spaced
at the given distance have dissimilar tuning profiles.
To compute spatial ACF's, we systematically varied the spatial distance be-
ws  tween channels, from including only immediately neighbouring channels (0 <
distance < 0.4 mm) to channels that are spaced apart more than one channel
width but no more than two (0.4 mm < distance < 0.8 mm), continuing these
steps up and till nine channel widths (3.2 mm < distance < 3.6 mm), and com-
puted the spatial autocorrelation for each distance. At distance 0, the spatial
w0 autocorrelation is set to 1 by definition. We computed an ACF for each array
in each session in each task.
To quantify the spatial scale of the functional topographies, we fitted a
Laplacian function to the spatial ACFs. The Laplacian function captures the
exponential decay of channel tuning similarity as the distance between channels

a5 increases. The Laplacian function used is defined as follows:

F(d)=1.02 x e~ % —0.02

where d > 0 reflects the distances; and s is a fitted value, reflecting the
smoothness of the curve. The full-width-at-half-maximum (FWHM) of the

Laplacian curve can be computed using s via the following formula:

FWHM =2 x s x1n(2)

The FWHM of a fitted Laplacian function is equivalent to the FWHM of

w0 the 2-dimensional kernel required to smooth an array whose channel tuning
profiles are spatially independent, to yield the degree of spatial autocorrelation

we observe in the data (Diedrichsen et al., |2011)). We therefore use the FWHM

as an estimator of spatial scale.

4.4.6. Mapping tuning similarity on the array
465 To visualize the spatial structure of tuning similarity on the arrays, we con-

verted the correlations in the tuning similarity matrix to correlation distances,
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and applied 2D multidimensional scaling (MDS) to the distances. Channels
were colour-coded based on their location in the 2D MDS space and projected
back to the arrays. In the colour space, hue reflects polar angle, and satura-
a0 tion reflects eccentricity. Similar colours indicate similar tuning profiles. As a
check, we computed the variance explained in the high-dimensional distances
by the low-dimensional distances for a range of MDS dimensions (1-10). We
computed the variance explained by first correlating the correlation distances
between points (channels) in the original high-dimensional space with the Eu-

a5 clidean distances between points in the low-dimensional MDS space, and then

squaring the correlation coefficients (Kiani et al., 2015). The 2D MDS space ex-

plains around 80% of the variance in the original high-dimensional space across

monkeys, arrays, and tasks.

4.4.7. Linking the functional topographies to structural maps

480 To relate the spatial scale of the observed functional topographies to prior
anatomical tracing work, we repeated the spatial autocorrelation analysis on a
reconstructed structural map of afferent input to macaque LPFC
[1984). This structural map shows the terminal field distributions of

callosal fibers projecting from the principal sulcus in one hemisphere to the prin-

a5 cipal sulcus in the other hemisphere (Goldman and Nauta) [1977). The fibers

terminate in a stripe-like pattern, reflecting interdigitation of the contralat-

eral callosal fibers with associational fibers from the ipsilateral parietal cortex

(Goldman-Rakic and Schwartz, [1982). The structural map suggests the exis-

tence of cortical columns in LPFC, which have been reported to have a width of
w0 300 to 700 microns (Goldman-Rakic} [1984;|Goldman and Nautal, |1977; Leichnetz
let al. [1981}; |Goldman-Rakic and Schwartz| [1982; [Bugbee and Goldman-Rakic,
. To assess the spatial scale of the structural map, we randomly sam-

2 coverage from the map, simulating

pled 210 cortical patches with 4 x 4 mm
array placements. Sampled cortical patches were downsampled to 10 x 10 to
w5 match the measurement resolution of the Utah arrays used in our study. We

assessed the spatial ACF for each sampled patch and plotted the distribution
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of ACFs across samples. We then examined whether the ACF's observed for the
task-tuned topographies fall within the distribution derived from the anatomical
tracing map (see Figure [4)).

s0 5. Supplementary materials

5.1. Array placements

Figure [S1] shows approximate locations of the Utah arrays in each animal.

arcuate
principal
ROI

Figure S1: Approximate locations of the Utah arrays. Each monkey had two arrays
implanted at the ventral and dorsal end of the principal sulcus in their left LPFC, targeting
areas 8A and 9/46.

5.2. Measurement sessions

Data for the three behavioural tasks were acquired sequentially in the fol-
sos  lowing order for both monkeys: CDM, VWM and ODR. Figure [S2] shows when

each measurement session was acquired over the course of the experiments.
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Figure S2: Measurement sessions for each monkey.

a) Relative timing of measurement sessions (days) for monkey B. Yellow bars show sessions
for the ODR task, green for the VWM task and purple for the CDM task.

b) As in a), but for monkey T.

5.83. Tuning similarity of units measured by the same channel

To decide whether we can pool spiking activity across units within a chan-

nel, we estimated the distribution of tuning profile correlations among units
s measured by the same channel.

We first estimated mean-centred tuning profiles for each unit in each session
in each task, in the same way as described in Figure [[h-c. We then computed
tuning profile correlations for all unit pairs within a channel, and averaged
correlations across unit pairs for each channel. Figure shows histograms

sis  of the averaged correlations across all sessions within a task, for each monkey
and array. For completeness, we also show histograms of the number of units
measured by individual channels.

Figure[S3|shows that the majority of channels measure only one unit. When
a channel is measuring from multiple units, the units tend to have similar tun-

s0 ing profiles. Therefore, the spiking activity at the channel level is reasonably
representative of units measured, and we performed subsequent analyses at the

level of channels.
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Figure S3: Similarity of tuning profiles across units measured by the same chan-

nel.
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Figure S3:

a) The consistency of tuning profiles of units within the same channel in monkey B for the
ventral array in the ODR task. Upper panel: histogram of the number of units measured
by individual channels on the array. Lower panel: histogram of tuning profile correlations
between units measured by the same channel. The grey dashed line shows the median.

b) The same as in a) but in VWM task.

¢) The same as in b) but in CDM task.

d-f) The same as in a-c), but for monkey B dorsal array.

g-i) The same as in a-c), but for monkey T ventral array.
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