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Abstract

Neurons in the primate lateral prefrontal cortex (LPFC) flexibly adapt their

activity to support a wide range of cognitive tasks. Whether and how the

topography of LPFC neural activity changes as a function of task is unclear.

In the present study, we address this issue by characterizing the functional

topography of LPFC neural activity in awake behaving macaques performing

three distinct cognitive tasks. We recorded from chronically implanted multi-
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electrode arrays and show that the topography of LPFC activity is stable within

a task, but adaptive across tasks. The topography of neural activity exhibits

a spatial scale compatible with that of cortical columns and prior anatomical

tracing work on afferent LPFC inputs. Our findings show that LPFC maps of

neural population activity are stable for a specific task, providing robust neural

codes that support task specialization. Moreover, the variability in functional

topographies across tasks indicates activity landscapes can adapt, providing

flexibility to LPFC neural codes.

Keywords: Lateral prefrontal cortex, rhesus macaque, multi-electrode

electrophysiology, cognitive flexibility, functional maps, spatial scale, cortical

columns

1. Introduction

Flexibility is one of the defining properties of higher-order cognitive func-

tions supported by the primate lateral prefrontal cortex (LPFC). Unlike neural

populations in primary sensory areas, where activity is dominated by stimulus

input, LPFC neurons flexibly adapt their activity according to rules, contextual5

associations and feedback associated with different tasks, even when stimulus in-

puts are held constant (Duncan, 2001; Freedman et al., 2001; Miller and Cohen,

2001; Lennert et al., 2011; Lennert and Martinez-Trujillo, 2013). This flexibility

is shaped in part by the diversity of connections LPFC neurons receive, which

is more heterogeneous than for sensory neurons (Goldman-Rakic, 1988; Fuster,10

2015). Because of their diverse connections, response profiles of LPFC neurons

often exhibit selectivity to mixtures of task features, e.g., firing maximally only

to a specific combination of rule, context and feedback (Rigotti et al., 2013; Fusi

et al., 2016).

The selectivity of individual LPFC neurons to different combinations of task15

features creates unique challenges to understanding their functional organiza-

tion. In the visual cortex, individual neurons with preferences for similar stim-

ulus features typically assemble into locally connected populations, giving rise
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to functional organizations which can be spatially delineated using stimulus

mapping techniques (Wandell et al., 2007). For instance, stimulating different20

visual field locations (Brewer et al., 2002), stimulus orientations (Fang et al.,

2022), or object categories (Bell et al., 2009; Bao et al., 2020) reveals maps of

neural populations with distinct feature preferences in striate and extrastriate

cortex, respectively. The response profiles of these stimulus-tuned populations

persist over days, weeks and months (Margolis et al., 2012; McMahon et al.,25

2014; Cossell et al., 2015), forming stable topographies with a columnar spa-

tial scale (Hubel and Wiesel, 1968; Tanaka, 1996) detectable using recording

techniques such as multi-electrode arrays and functional magnetic resonance

imaging (fMRI) (Brewer et al., 2002; Yacoub et al., 2008; Bell et al., 2009; Bao

et al., 2020). However, it remains an open question whether LPFC exhibits task-30

specific functional topographies (Markowitz et al., 2015; Masse et al., 2017; Bul-

lock et al., 2017; Leavitt et al., 2018), and if so, whether these topographies are

stable over time (Driscoll et al., 2017; Muysers et al., 2024), and have a spatial

scale similar to those of other cortical areas. Testing for task-specific topogra-

phies of LPFC activity in primates, i.e., ’task mapping’, has proven challenging35

due to constraints on the complexity and diversity of the ’task space’ typically

sampled in a given experiment (Yang et al., 2019a). Primate electrophysiology

studies often probe only a single task, or task features which are not sufficiently

distinct from one another, and do not analyze session-to-session variability in

neural activity to characterize population stability.40

If task-specific functional topographies exist in LPFC at a spatial scale

similar to sensory cortical areas, then this functional organization should be

detectable when mapping responses to different task features embedded in a

sufficiently diverse task space, and, replicable over time. Here we examined

this possibility by acquiring multi-electrode array data from the LPFC of two45

macaques who were each trained on three distinct cognitive tasks (Luna et al.,

2019; Roussy et al., 2021; Corrigan et al., 2022). From these rich data, we were

able to perform task mapping of neural response preferences over a well param-

eterized set of different task feature combinations. The monkeys performed the
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same set of tasks over test sessions spanning multiple days, allowing us to assess50

the stability of task-tuned population responses over time.

We show that topographies of LPFC activity are task-specific and stable

within a task. We then demonstrate a columnar spatial scale of functional

organization, consistent across all three task-specific functional topographies,

which recapitulates prior anatomical tracing work examining the afferent in-55

put patterns of LPFC from ipsilateral associational cortices and contralateral

LPFC (Goldman-Rakic, 1984; Goldman-Rakic and Schwartz, 1982; Leichnetz

et al., 1981). Our results indicate that the functional organization of LPFC

exhibits stable topographies of task-specific population activity, likely reflecting

distinguishable mixtures of afferent sensory and cognitive stimulation.60

2. Results

2.1. Topography of LPFC neural activity across time and tasks

The same two rhesus macaque monkeys (monkey B and monkey T) each

performed three cognitive tasks (see Figure 1a-c). The first task is an oculo-

motor delayed response task (ODR) (Luna et al., 2019). The second task is a65

visuospatial working memory task (VWM) deployed in a virtual-reality envi-

ronment with naturalistic scenes for stronger attentional engagement (Roussy

et al., 2021; Doucet et al., 2016). The third task is a context-dependent decision-

making task (CDM), which was also deployed in a virtual-reality environment

(Corrigan et al., 2022). Altogether, these three tasks engage a wide spectrum of70

cognitive functions, including working memory, visuospatial attention, context-

dependent decision making and motor planning.

We recorded the responses of neurons in layer II/III of LPFC areas 8A and

9/46, ventral and dorsal to the principal sulcus, using 96-channel multi-electrode

Utah arrays (see Supplemental Figure S1). Each array covered a 4 mm × 4 mm75

cortical area with 10 × 10 electrodes (∼0.4 mm spacing). Data were spike sorted

and action potential times were extracted and synchronized to task events. To

enable spatial mapping of response preferences across the array, we pooled units
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measured by the same channel by summing up their spiking activities. We did so

after establishing that units measured by the same channel have similar response80

preferences (see 5.3 for details). The pooled activity reflects the activity of

subpopulations of neurons within the area covered by an array channel.

To characterize the spatial organization of prefrontal population codes, we

first computed task tuning profiles, one for each channel in each session in each

task. Task tuning profiles are vectors that store the firing rates of a channel to85

the experimental conditions. The time windows for estimating spike rates vary

from a few hundred milliseconds up to a few seconds (see 4.4 for details). These

time windows were determined based on task structure, monkey behaviour and

population decoding results. Next, we computed a channel-by-channel tuning

similarity matrix (Figure 1g) for each array in each session in each task. Each el-90

ement of the matrix represents the Pearson correlation of tuning profiles between

a channel pair. The matrix as a whole reflects the similarity of task tuning for

all channel pairs, thus capturing the functional topography of task-tuned LPFC

activity. For comparative purposes, we also analyzed trial-to-trial fluctuations

about the trial averages that define the tuning profiles (see 4.4 for further de-95

tails). Topographies based on these spontaneous fluctuations, or residuals, are

expected to be consistent across tasks (Cole et al., 2014; Kiani et al., 2015).

Results of subsequent analyses are consistent across monkeys and arrays.
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Figure 1: Comparing task-tuned functional topographies in LPFC across time

and tasks.

a) Oculomotor delayed response task (ODR). In this task, the monkeys fixated a point on the

screen. A cue showed up then disappeared. After a delay, the monkeys saccaded towards the

remembered target location.

b) Visuospatial working memory task (VWM). In the cue period, a visual cue showed up in

one of nine target locations in a virtual arena, then disappeared. After a delay, the monkeys

navigated towards the remembered target location using a joystick.

c) Context-dependent decision-making task (CDM). During the task, the monkeys navigated

through an X maze using a joystick. The texture of the corridor walls (wood or steel) indicated

the decision context, i.e., which coloured disk the monkey should choose at the bifurcation

to get a reward given the texture of the walls (e.g., if wood, choose orange; if steel, choose

green).

d) Tuning profile for an example channel in the ODR task. The 16 targets were grouped

into 4 quadrants based on their location in the retinotopic reference frame. We computed

trial-averaged spike rates for each quadrant during cue, delay and response epochs to estimate

the tuning profile for this channel.

e) Tuning profile for the same channel in the VWM task. We computed trial-averaged spike

rates for each of the 9 target locations during cue, delay, and response epochs to estimate the

tuning profile for this channel.

f) Tuning profile for the same channel in the CDM task. We computed trial-averaged spike

rates for each combination of decision contexts and goal configurations in time windows before

and after context onset, goals onset, and decision onset to estimate the tuning profile for this

channel. Configuration 1: colour associated with wood on the left-hand side; configuration 2:

colour associated with wood on the right-hand side.
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Figure 1:

g) Schematics for comparing the topography of task-tuned responses across time and tasks.

Tuning similarity matrices are shown for 2 example sessions in ODR, VWM and CDM tasks.

Elements of the matrices represent the Pearson correlation of tuning profiles between channel

pairs. We estimated the consistency of tuning similarity matrices across time within a task

(solid horizontal lines) and across tasks (dotted lines) to study how topography of task-tuned

responses changes across time and across tasks.

2.2. The topography of LPFC neural activity is stable over time but adaptive

across tasks100

Examining the tuning similarity matrices, we found that the mean cross-

channel correlation (r) over sessions and tasks was 0.50+/-0.21 (mean+/-SD)

for monkey B (mB) and 0.43+/-0.17 for monkey T (mT). In the residual sim-

ilarity matrices, the mean cross-channel correlation (r) over sessions and tasks

was 0.08+/-0.04 for mB and 0.14+/-0.08 for mT. To assess whether the func-105

tional topography of LPFC neural activity is consistent over time (sessions) and

across tasks (ODR, VWM and CDM), we computed the average correlation of

the channel-by-channel similarity matrices across sessions within and between

tasks (Figure 1g). To control for array shifting across time, we only included

sessions spaced apart no more than 20 days for within- as well as between-task110

comparisons. Given that data for some tasks were acquired more than 20 days

apart, between-task comparisons are based on two out of three tasks for each

monkey (see 5.2 for further details).

Over time, the consistencies of the task-tuned topographies were as fol-

lows: mB: VWM-VWM r = 0.43, mB: CDM-CDM r = 0.25, mT: VWM-VWM115

r = 0.38 and mT: ODR-ODR r = 0.21). In all cases, the r values for within-

task consistencies were significantly larger than zero (p < 0.05, permutation

test, Figure 2a). More importantly, the within-task consistencies for task-tuned

topographies were significantly higher than those observed for residual topogra-

phies (mB: VWM-VWM t(54) = 3.97, p < 0.001, mB: CDM-CDM t(14) = 2.95,120

p = 0.01, mT: VWM-VWM t(13) = 3.28, p = 0.006 and mT: ODR-ODR
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t(5) = 2.60, p = 0.05). Hence, over sessions of a given task, the topographies of

task-tuned responses are more consistent than the topographies of concurrent

trial-to-trial fluctuations in spontaneous activity.

Across different tasks, the consistencies of task-tuned topographies were as125

follows: mB: VWM-CDM r = 0.11, mT: VWM-ODR r = 0.18. These consis-

tencies were significantly below their estimated noise ceilings, suggesting that

task-tuned functional topographies are not fully consistent across tasks even

when considering noise inherent to the data. Moreover, the r values quanti-

fying between-task consistency of task-tuned topographies were either signifi-130

cantly lower than or not significantly different from those observed for residual

topographies (mB: VWM-CDM t(36) = −3.03, p = 0.005, mT: VWM-ODR

t(3) = −0.51, p = 0.64). Hence, between a given pair of two different tasks, the

topographies of task-tuned responses are less consistent than the topographies

of concurrent spontaneous trial-to-trial fluctuations in activity.135

Our analyses suggest that task-tuned functional topographies in LPFC are

(1) stable across time within a task: neural populations that have similar tuning

on one day tend to have similar tuning on another day, and, (2) adaptive across

tasks: neural populations that respond similarly in one task do not necessarily

respond similarly in another task.140
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Figure 2: Task-tuned functional topographies in LPFC are stable across time but

adaptive across tasks.

a) Consistency of functional topographies across time within a task. The functional topogra-

phies are more consistent across time for task-tuned responses than for residuals. Results are

shown for the ventral array of monkey B in the VWM and CDM tasks (paired t-test, p < 0.05

uncorrected, black horizontal lines indicate significance). Error bars show the standard error

of the mean consistency of tuning similarity matrices across session pairs.

b) Consistency of functional topographies between tasks. The functional topographies are less

consistent between tasks for task-tuned responses than for residuals. Results are shown for

the ventral array of monkey B (paired t-test, p < 0.05 uncorrected, the black horizontal line

indicates significance). Furthermore, the between-task consistency for task-tuned responses is

significantly lower than the noise ceiling (t-test, p < 0.05 uncorrected, ▽ indicates significance),

which is not the case for residuals. Grey horizontal line shows the noise ceiling. Error bars

show the standard error of the mean consistency of tuning similarity matrices across session

pairs.

c, d) as in a, b), but for the ventral array in monkey T, using VWM and ODR tasks.

For both monkeys, the consistencies of functional topographies for task-tuned responses and

residuals are significantly higher than chance, both within- and between-tasks (channel per-

mutation test, p < 0.05, uncorrected, significance not shown for simplicity).
9
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2.3. Linking the topography of LPFC neural activity to fine-grained spatial maps

Given that feature-tuned neurons are known to cluster in populations at

the spatial scale of cortical columns (Hubel and Wiesel, 1968; Tanaka, 1996;

Masse et al., 2017), the observed functional patterns of within- and between-

task consistency in LPFC (Figure 2) may be expressed spatially by stable clus-145

ters of similarly tuned neurons with an adaptive task-dependent ’fingerprint’.

To quantify the degree of spatial clustering of channels with similar response

preferences on the array, we used the tuning profile as defined in Figure 1d-f,

in accordance with previous studies (Leavitt et al., 2018; Bullock et al., 2017;

Arbuckle et al., 2020; King et al., 2019). From these tuning profiles, we then150

computed a spatial autocorrelation function (ACF). A positive autocorrelation

indicates that channels spaced at a specified spatial distance have similar tun-

ing profiles, while a negative autocorrelation indicates that channels spaced at

the specified distance have dissimilar tuning profiles. Zero indicates no spatial

autocorrelation. We systematically varied the spatial distances and plotted the155

spatial autocorrelation as a function of distance. At a distance of zero, the ACF

was set to 1 by definition. We then fitted a Laplacian function to the spatial

ACF for each array in each session in each task to capture the exponential de-

cay of the ACF as a function of distance and to quantify the spatial scale of

the functional organization. The spatial scale is estimated by the full-width-at-160

half-maximum (FWHM) of the Laplacian function, which is the FWHM of the

2-dimensional kernel needed to smooth spatially independent tuning profiles to

yield the same degree of clustering we see in the data (Diedrichsen et al., 2011).

From the ACFs of both monkeys, we observed a positive autocorrelation up

to a distance of 1-2 mm across tasks (Figure 3a). The median of the FWHMs165

across sessions and tasks is 341 +/- 105 microns (SD), suggesting the existence

of fine-grained clusters on the arrays.

To get an impression of the spatial structure of the tuning similarity on

the arrays, we next visualized the data using 2-dimensional (2D) multidimen-

sional scaling (MDS). We converted the tuning profile correlations to correlation170

distances, and applied 2D MDS. Channels were colour-coded based on their lo-
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cation in the 2D MDS space and projected back to the arrays (Figure 3b). The

MDS array maps confirm that the functional organization in LPFC is stable

across time within a task, as can be seen by the similarity between intra-task

array pairs in Figure3c. In contrast, LPFC functional organization is adaptive175

across tasks, as evidenced by the dissimilarity of inter-task array pairs in Figure

3c.

From the 2D MDS array maps, we also observed fine-grained spatial patterns

consistent with clustering of population activity according to distinct task-tuned

feature preferences. To explore whether these clusters become more pronounced180

when smoothed according to the empirically derived cluster sizes from the fitted

Laplacians, we smoothed the 2D MDS maps using 2D Gaussian kernels whose

FWHM matches that of the fitted Laplacians. In all three tasks, smoothing the

2D MDS with its corresponding FWHM kernel revealed clusters of task-tuned

population activity similar to maps observed in other cortical areas (Figure 3d)185

(Brewer et al., 2002; Fang et al., 2022; Yacoub et al., 2008).
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Figure 3: Task-tuned functional topographies in LPFC are organized at a fine-

grained spatial scale.

a) Spatial autocorrelation functions (ACFs) for ODR, VWM, and CDM tasks. Solid lines

represent the ACFs for individual sessions in each task. Colours reflect the corresponding

arrays: light blue for monkey B ventral array, dark blue for monkey B dorsal array, and pink

for monkey T ventral array. Grey shaded areas show the width between two immediately

neighbouring channels (0.4 mm). Vertical dashed lines show the median full-width-at-half-

maximum (FWHM) of fitted Laplacian function across sessions.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.591729doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.591729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3:

b) Steps taken to visualize channel task-tuning profile similarity on the array. Channels with

similar task-tuning profiles are colour-coded similarly.

c) MDS visualizations for monkey B dorsal array in all three tasks, two example measurement

sessions per task.

d) Array maps in c) after smoothing with 2D Gaussian kernels whose FWHMs match the

fitted Laplacian functions.

Our findings suggest that task-tuned LPFC responses are clustered at the

spatial scale of cortical columns. Prior anatomical tracing work on macaque

LPFC suggests that cortical columns in the principal sulcus have a width of

300 - 700 microns (Goldman-Rakic, 1984; Goldman and Nauta, 1977; Bugbee190

and Goldman-Rakic, 1983). We next asked what properties of cortical organi-

zation might shape this spatial scale. One possibility is that the afferent input

projections from different regions of the brain may exhibit a spatial scale of clus-

tering in the LPFC similar to that of the functional topographies observed in

the present work. This would suggest that the structural organization of long-195

range inputs into LPFC shapes the functional topographies of its task-tuned

responses. To test this hypothesis, we acquired a structural connectivity map

representing the profile of afferent inputs to the macaque principal sulcus of the

LPFC from the contralateral principal sulcus through colossal fibres (i.e., the

black stripes), and from the ipsilateral parietal cortex through associational fi-200

bres (i.e., the gaps interdigitated with the black stripes) (Goldman-Rakic, 1984).

The structural map overlaps the cortical patch measured with multielectrode

arrays in the current study (Figure 4a). Because the connectivity map provided

coverage of a cortical patch which was larger than the 4 mm × 4 mm patch

covered by the electrode array in the current study, we used a 4 mm × 4 mm205

window to randomly sample 210 locations, thereby providing an unbiased es-

timate of the map’s intrinsic spatial frequency (Figure 4b). At each sample,

we down-sampled the map to 10 × 10 pixels (matching the spatial resolution

of the array) and computed the spatial ACF using the same strategy as de-
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picted in Figure 3a. From these 210 samples, we observed that the mean ACF210

of the afferent inputs into LPFC closely approximates that observed from the

functionally derived topographies in Figure 3a (Figure 4d).

Figure 4: Linking task-specific functional topographies in LPFC to fine-grained

structural maps.

a) Anatomical tracing of white matter fibre inputs to macaque LPFC, adapted from (Goldman-

Rakic, 1984). LPFC receives inputs through contralateral colossal fibres of the principal

sulcus (PS; indicated by the solid black arrow) and ipsilateral association fibres from the

intraparietal sulcus (IPS; indicated by the white strike arrow), providing the neural basis for

interhemispheric integration. HRP = horeradish peroxidase, H3 − AA = tridared amino

acids.

b) Topographical input patterns of LPFC, adapted from (Goldman-Rakic, 1984). The black

dashed line represents the rim of the principal sulcus. The black stripes show the reconstructed

terminal fields of colossal fibres in the principal sulcus, reflecting inputs from the contralateral

principal sulcus. The square in red shows an example of the total 210 sampled cortical patches.

In a separate experiment, interdigitated white areas were shown to receive inputs from IPS.

c) Examples of randomly sampled cortical patches from the reconstructed map in panel b).

Each sample has a coverage of 4 mm × 4 mm.

d) Grey lines represent the ACFs for each of the 210 randomly sample cortical patches. The

yellow, green and purple lines show the mean ACFs of task tuning across sessions for the

ODR, VWM and CDM tasks, respectively, for the dorsal array in monkey B.

3. Discussion

We characterized the functional topography, temporal stability, and spatial

scale of task-tuned LPFC neural activity by analyzing array recordings from215

awake behaving macaques performing a range of cognitive tasks (Luna et al.,

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.591729doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.591729
http://creativecommons.org/licenses/by-nc-nd/4.0/


2019; Roussy et al., 2021; Corrigan et al., 2022). We show that the spatial

topography of task-tuned LPFC neural activity is stable across time within a

task but adaptive across tasks. The stability for task-tuned responses is higher

than for concurrent spontaneous fluctuations, indicating that the correlation220

structure among LPFC neural populations is strengthened by task. We further

demonstrate that although all three tasks exhibit distinct topographies of task-

tuned activity, they converge on a common spatial scale compatible with that

of cortical columns. Finally, we show that this spatial scale is likely shaped,

in part, by the organization of afferent long-range inputs into the LPFC from225

distinct cortical areas throughout the brain.

Progress on understanding the functional organization of primate LPFC has

been hampered by (1) the limited number of tasks sampled in typical mon-

key electrophysiology or human functional magnetic resonance imaging (fMRI)

studies (Harel et al., 2014; Bullock et al., 2017; Leavitt et al., 2018; Yang et al.,230

2019a) and (2) a disconnect between the study of structural and functional or-

ganization in LPFC (Goldman-Rakic, 1984; Xu et al., 2022; Kiani et al., 2015;

Bullock et al., 2017; Leavitt et al., 2018). Below we discuss these obstacles in

relation to the current study.

Across the three different tasks examined in this study, we noted that the235

between-task consistency of LPFC topographies was lower for task-tuned re-

sponses than for concurrent spontaneous fluctuations in neural activity, but

still shared a significant portion of task-related variance. This shared variance

may be driven by similarity in cognitive demands across tasks, which at present

is difficult to define objectively. Future studies may benefit from generating240

’task ontologies’ sampled from a high-dimensional space consisting of diverse

but carefully parameterized task features. These task ontologies could then be

used to systematically vary the functional structure of the tested task space, e.g.,

similarity of two distinct tasks to one another or their additivity, thereby en-

abling exploration of more computationally principled hypotheses about LPFC245

function, including biased competition (Desimone and Duncan, 1995; Schmitz

and Duncan, 2018) and compositional coding (Duncan et al., 2017; Yang et al.,
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2019b).

Our findings suggest that LPFC functional topographies are likely shaped

by the unique profiles of long-range afferent input (Goldman-Rakic, 1988; Xu250

et al., 2022), which yield preferences for distinct combinations of task features,

i.e., task tuning. The structural organization of a diverse repertoire of long-range

synaptic inputs into the LPFC (Goldman-Rakic, 1984) may therefore provide

the scaffolding for LPFC’s functional organization, by shaping the intrinsic net-

work structure that task activation flows on (Cole et al., 2016; Xu et al., 2022).255

Future investigations examining fine-grained maps of LPFC task-tuning may ne-

cessitate multimodal measures of both LPFC functional and structural organi-

zation within the same animals. Several recent studies have laid the groundwork

for this critical line of inquiry using innovative techniques integrating functional

MRI with LPFC micro-stimulation (Xu et al., 2022) and diffusion MRI (Xu260

et al., 2020). Finally, our findings in macaques indicate that LPFC functional

topographies have a spatial scale that is accessible in humans with high-field

fMRI. Looking ahead, cross-species translational work leveraging macaque elec-

trophysiology and human fMRI to map fine-grained task information from LPFC

population activity is within reach.265

4. Methods

4.1. Subjects and ethics statement

We recorded LPFC neural activity in two male rhesus macaques (Macaca

mulatta, monkey B and monkey T, 10 and 9 years old) while they were per-270

forming three different cognitive tasks across multiple measurement sessions. All

training, surgery, and recording procedures conformed to the Canadian Council

on Animal Care guidelines and were approved by The University of Western

Ontario Animal Care Committee.
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4.2. Behavioural tasks275

4.2.1. Oculomotor delayed response (ODR) task

Figure 1a illustrates the experimental setup of the oculomotor delayed re-

sponse task. Each trial began with the appearance of a fixation point at one of

16 predefined locations on a computer screen. Then a target was presented for

1000 ms before it disappeared. The monkeys were asked to maintain fixation280

for a variable length delay period (1400 ms - 2500 ms, median = 1800 ms) and

upon extinction of the fixation point, make a saccade towards the remembered

target location to get a reward. More information on the ODR task can be

found in (Luna et al., 2019).

4.2.2. Visuospatial working memory (VWM) task285

Figure 1b illustrates the experimental setup of the visuospatial working mem-

ory task, which took place in a virtual reality environment. Within the virtual

arena in the environment, targets were arranged in a 3 × 3 grid. The time

needed to navigate between adjacent targets was ∼0.5 s. During the cue period,

a visual cue (red rectangle) was presented in one of the nine target locations290

for 3 seconds, then disappeared. After a 2-second delay, the monkeys navigated

towards the remembered target location at a constant speed using a joystick.

Upon reaching the correct target, the monkeys received a reward. More infor-

mation on the VWM task can be found in (Roussy et al., 2021).

4.2.3. Context-dependent decision making (CDM) task295

Figure 1c illustrates the experimental setup of the context-dependent de-

cision making task, which was also deployed in a virtual reality environment.

The task took place in a double ended Y maze, also termed ”X maze” as in

(Doucet et al., 2016; Gulli et al., 2020). The monkeys navigated through the X

maze using a joystick. The texture of the walls, being brown ”wood” or dark300

grey ”steel”, indicated which coloured disk the monkeys should choose at the

bifurcation to get a reward. In other words, the decision context was specified
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by the texture of the walls. We will refer to the coloured disks as goals in sub-

sequent text. More information on the CDM task can be found in (Corrigan

et al., 2022).305

4.3. Neural recordings

Two 96-channel Utah arrays (4 mm × 4 mm coverage, 10 × 10 electrodes,

spaced at 0.4 mm, 1.5 mm in length) (Blackrock Microsystems) were chronically

implanted in the left LPFC in each animal. They were located anterior to the

arcuate sulcus and on the ventral and dorsal side of the posterior end of the310

principal sulcus, targeting layers II/III of cortical areas 8A and 9/46. See 5.1

for further details on array placement.

Neural data were recorded using a Cerebus Neural Signal Processor (Black-

rock Microsystems). The neural signal was digitized (16 bit) at a sampling rate

of 30 kHz. Offline sorting was done with the Plexon Offline sorter (version 4.5.0,315

Plexon Inc.). Spike sorting for the ODR task was carried out by RL, for the

VWM task by MR, and for the CDM task by BWC.

Both monkeys performed multiple sessions for each task. Sessions were ac-

quired on separate days. Monkey B performed 4 sessions for the ODR task,

11 sessions for the VWM task, and 6 sessions for the CDM task. Monkey T320

performed 4 sessions for the ODR task, 8 sessions for the VWM task, and 9 ses-

sions for the CDM task. One session was excluded from analysis in the VWM

task for monkey T due to low trial numbers across experimental conditions. See

5.2 for further details on the measurement sessions. For all tasks, eye positions

were monitored using SR Research EyeLink 1000, at a sampling rate of 500 Hz.325

The dorsal array in monkey T was excluded from analysis due to low signal-

to-noise ratio of recordings at the time of the experimental sessions, which makes

it difficult to map the topography of the array.
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4.4. Neural data analysis

4.4.1. Computing task tuning profiles330

To enable spatial mapping of response preferences across the array, we pooled

units recorded from the same channel by summing up their spiking activities.

We did so after establishing that units recorded from the same channel have

similar response preferences (see 5.3 for details). The pooled activity reflects

the activity of subpopulations of neurons within the area covered by an array335

channel. This area has an estimated diameter of 300 microns based on the

impedance of the electrodes.

For each channel in each session in each task, we first computed trial-specific

spike rates for each experimental condition and applied a square root transfor-

mation to the spike rates to account for the Poisson-like increase of variability340

with increasing mean firing rates (Yu et al., 2009; Arbuckle et al., 2020). We

next computed trial-averaged spike rates by averaging across trials of the same

experimental condition, which yielded a task tuning profile for each channel.

More specifically, in the ODR task, the tuning profile for a channel was

defined as the trial-averaged spike rates for the 4 quadrants (16 targets were345

grouped into 4 quadrants based on their location in the retinotopic reference

frame, labelled 1-4 starting from bottom left, clockwise) during cue (1000 ms),

delay (1400 ms - 2500 ms, median = 1800 ms), and response (first 500 ms)

epochs. In the VWM task, the tuning profile for a channel was defined as

the trial-averaged spike rates for the 9 target locations during cue (3000 ms),350

delay (2000 ms), and response (first 500 ms) epochs. In the CDM task, the

tuning profile for a channel was defined as the trial-averaged spike rates for

the combinations of decision contexts and goal configurations in time windows

before and after context onset (50 ms before, 600 ms after), goals onset (500

ms before, 300 ms after), and decision onset (500 ms before, 500 ms after).355

Goal configuration refers to the location of the disk colour that is associated

with wood. If the colour associated with wood is on the left-hand side at the

bifurcation, the trial is in configuration 1, otherwise configuration 2.
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We then subtracted out the mean firing rate across all experimental condi-

tions. The mean-centred tuning profile reflects the modulation in firing rate by360

the experimental conditions, providing a rich characterization of channel tun-

ing in each task. The time windows used for computing tuning profiles were

based on trial structure, monkey behaviour, and neural population decoding

results. Results of subsequent analyses do not critically depend on the exact

time windows used.365

4.4.2. Computing the topography of task-tuned activity

For each array in each session in each task, we computed a channel-by-

channel tuning similarity matrix. Elements in this matrix reflect the Pearson

correlation of tuning profiles between channel pairs. The matrix reflects the sim-

ilarity of task tuning for all channel pairs, thus capturing the similarity structure370

of tuning across the array. As such, it provides the basis for mapping of tun-

ing similarity across the cortical sheet. This approach can be used to study

functional topography (Kiani et al., 2015; Ito and Murray, 2023). Importantly,

the tuning similarity matrices abstract from the specific experimental condi-

tions used in a single task, which enables comparison of functional topographies375

between tasks.

4.4.3. Computing the topography of spontaneous activity

For comparative purposes, we also analyzed trial-to-trial fluctuations about

the trial averages that define the tuning profiles. Topographies based on these

spontaneous fluctuations are expected to be consistent across tasks (Kiani et al.,380

2015; Cole et al., 2014). We partitioned the measured spiking activity in two

components: task-tuned activity and spontaneous activity or residuals. For

each channel in each session in each task, we computed task-tuned activity by

replacing the firing rate of each trial with the mean firing rate across trials of

the same experimental condition. This corresponds to a tuning profile where385

the trial-averaged spike rate for each condition is repeated as many times as

the number of trials for that condition. We computed residuals by subtract-
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ing out the task-tuned activity from the measured spiking activity. We then

computed topographies for task-tuned activity and residuals as described in the

previous section, but replaced tuning profiles by task-tuned or residual activity390

vectors. Results reported in Figure 2 are based on the task-tuned and residual

topographies, allowing for a direct comparison between the two.

4.4.4. Assessing the consistency of functional topographies across time and across

tasks

To assess whether the functional topographies are consistent across time and395

across tasks, we computed the Pearson correlation of tuning similarity matrices

across session pairs within and between tasks (see Figure 1g). Because the

matrices are symmetric, we computed correlation coefficients using the upper

triangular vector of the matrix. The consistency of functional topographies

within and between tasks was estimated as the mean across session pairs. To400

control for array shifting across time, we only included sessions spaced apart

no more than 20 days for within- as well as between-task comparisons. Given

that data for some tasks were acquired more than 20 days apart, between-task

comparisons are based on two out of three tasks for each monkey (see 5.2 for

further details).405

To determine whether the estimated consistencies are significantly higher

than chance, we permuted channel locations on the array to simulate the null

hypothesis of no consistent spatial organization. We performed 1,000 permuta-

tions, each yielding an estimate of our test statistic under the null hypothesis.

If the actual consistency fell within the top 5 percent of the simulated null dis-410

tribution, we rejected the null hypothesis of no consistent spatial organization.

For between-task consistencies, we did not only test if they were higher than

expected for no consistent spatial organization, we also tested if they were lower

than expected for a fully consistent spatial organization. We did so by esti-

mating a noise ceiling for between-task consistencies. For each task pair, the415

noise ceiling is defined as the geometric mean of the within-task consistencies,

which reflects the maximum expected between-task consistency given the noise

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.10.591729doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.591729
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the data (Vul et al., 2009). When estimating the noise ceiling, within-task

consistencies are based on sessions that are also involved in between-task com-

parisons. We compared the observed between-task consistencies against the420

noise ceiling using a one-sided one-sample t-test across session pairs. We com-

pared consistencies of task-tuned and residual topographies using a two-sided

paired-samples t-test across session pairs.

4.4.5. Assessing the spatial scale of functional topographies

To assess the spatial scale of the functional topographies, we computed spa-425

tial autocorrelation functions (ACFs) of channel tuning profiles on the array. We

used global Moran’s I as a measure of spatial autocorrelation (Moran, 1950),

which is defined as:

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)′(Xj − X̄)∑
i(Xi − X̄)′(Xi − X̄)

where N is the total number of channels on the array; Xi is the mean-centred

tuning profile for the ith channel; Xj is the mean-centred tuning profile for the430

jth channel; X̄ is the mean-centred tuning profile averaged across all channels;

and wij is either 1 or 0 (if channel i and channel j are spaced within a specified

spatial range, wij equals 1; otherwise 0).

The numerator estimates the covariances of tuning profiles between channel

pairs spaced at a certain distance. The denominator estimates the variances of435

tuning profiles across all the channels on the array. To account for the fact that

some channels appear more frequently than others in the covariance estimates,

the variance can be estimated using the following formula as in (King et al.,

2019):

√∑
i

∑
j wij(Xi − X̄)′(Xi − X̄)

∑
i

∑
j wij(Xj − X̄)′(Xj − X̄)∑

i

∑
j wij

Using this formula for estimating the variance ensures that I is bounded440

between -1 and 1. A positive I indicates that channels spaced at the given
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distance have similar tuning profiles; a negative I indicates that channels spaced

at the given distance have dissimilar tuning profiles.

To compute spatial ACFs, we systematically varied the spatial distance be-

tween channels, from including only immediately neighbouring channels (0 <445

distance ≤ 0.4 mm) to channels that are spaced apart more than one channel

width but no more than two (0.4 mm < distance ≤ 0.8 mm), continuing these

steps up and till nine channel widths (3.2 mm < distance ≤ 3.6 mm), and com-

puted the spatial autocorrelation for each distance. At distance 0, the spatial

autocorrelation is set to 1 by definition. We computed an ACF for each array450

in each session in each task.

To quantify the spatial scale of the functional topographies, we fitted a

Laplacian function to the spatial ACFs. The Laplacian function captures the

exponential decay of channel tuning similarity as the distance between channels

increases. The Laplacian function used is defined as follows:455

f(d) = 1.02× e−
d
s − 0.02

where d ≥ 0 reflects the distances; and s is a fitted value, reflecting the

smoothness of the curve. The full-width-at-half-maximum (FWHM) of the

Laplacian curve can be computed using s via the following formula:

FWHM = 2× s× ln(2)

The FWHM of a fitted Laplacian function is equivalent to the FWHM of

the 2-dimensional kernel required to smooth an array whose channel tuning460

profiles are spatially independent, to yield the degree of spatial autocorrelation

we observe in the data (Diedrichsen et al., 2011). We therefore use the FWHM

as an estimator of spatial scale.

4.4.6. Mapping tuning similarity on the array

To visualize the spatial structure of tuning similarity on the arrays, we con-465

verted the correlations in the tuning similarity matrix to correlation distances,
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and applied 2D multidimensional scaling (MDS) to the distances. Channels

were colour-coded based on their location in the 2D MDS space and projected

back to the arrays. In the colour space, hue reflects polar angle, and satura-

tion reflects eccentricity. Similar colours indicate similar tuning profiles. As a470

check, we computed the variance explained in the high-dimensional distances

by the low-dimensional distances for a range of MDS dimensions (1-10). We

computed the variance explained by first correlating the correlation distances

between points (channels) in the original high-dimensional space with the Eu-

clidean distances between points in the low-dimensional MDS space, and then475

squaring the correlation coefficients (Kiani et al., 2015). The 2D MDS space ex-

plains around 80% of the variance in the original high-dimensional space across

monkeys, arrays, and tasks.

4.4.7. Linking the functional topographies to structural maps

To relate the spatial scale of the observed functional topographies to prior480

anatomical tracing work, we repeated the spatial autocorrelation analysis on a

reconstructed structural map of afferent input to macaque LPFC (Goldman-

Rakic, 1984). This structural map shows the terminal field distributions of

callosal fibers projecting from the principal sulcus in one hemisphere to the prin-

cipal sulcus in the other hemisphere (Goldman and Nauta, 1977). The fibers485

terminate in a stripe-like pattern, reflecting interdigitation of the contralat-

eral callosal fibers with associational fibers from the ipsilateral parietal cortex

(Goldman-Rakic and Schwartz, 1982). The structural map suggests the exis-

tence of cortical columns in LPFC, which have been reported to have a width of

300 to 700 microns (Goldman-Rakic, 1984; Goldman and Nauta, 1977; Leichnetz490

et al., 1981; Goldman-Rakic and Schwartz, 1982; Bugbee and Goldman-Rakic,

1983). To assess the spatial scale of the structural map, we randomly sam-

pled 210 cortical patches with 4 × 4 mm2 coverage from the map, simulating

array placements. Sampled cortical patches were downsampled to 10 × 10 to

match the measurement resolution of the Utah arrays used in our study. We495

assessed the spatial ACF for each sampled patch and plotted the distribution
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of ACFs across samples. We then examined whether the ACFs observed for the

task-tuned topographies fall within the distribution derived from the anatomical

tracing map (see Figure 4).

5. Supplementary materials500

5.1. Array placements

Figure S1 shows approximate locations of the Utah arrays in each animal.

Figure S1: Approximate locations of the Utah arrays. Each monkey had two arrays

implanted at the ventral and dorsal end of the principal sulcus in their left LPFC, targeting

areas 8A and 9/46.

5.2. Measurement sessions

Data for the three behavioural tasks were acquired sequentially in the fol-

lowing order for both monkeys: CDM, VWM and ODR. Figure S2 shows when505

each measurement session was acquired over the course of the experiments.
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Figure S2: Measurement sessions for each monkey.

a) Relative timing of measurement sessions (days) for monkey B. Yellow bars show sessions

for the ODR task, green for the VWM task and purple for the CDM task.

b) As in a), but for monkey T.

5.3. Tuning similarity of units measured by the same channel

To decide whether we can pool spiking activity across units within a chan-

nel, we estimated the distribution of tuning profile correlations among units

measured by the same channel.510

We first estimated mean-centred tuning profiles for each unit in each session

in each task, in the same way as described in Figure 1a-c. We then computed

tuning profile correlations for all unit pairs within a channel, and averaged

correlations across unit pairs for each channel. Figure S3 shows histograms

of the averaged correlations across all sessions within a task, for each monkey515

and array. For completeness, we also show histograms of the number of units

measured by individual channels.

Figure S3 shows that the majority of channels measure only one unit. When

a channel is measuring from multiple units, the units tend to have similar tun-

ing profiles. Therefore, the spiking activity at the channel level is reasonably520

representative of units measured, and we performed subsequent analyses at the

level of channels.
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Figure S3: Similarity of tuning profiles across units measured by the same chan-

nel.
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Figure S3:

a) The consistency of tuning profiles of units within the same channel in monkey B for the

ventral array in the ODR task. Upper panel: histogram of the number of units measured

by individual channels on the array. Lower panel: histogram of tuning profile correlations

between units measured by the same channel. The grey dashed line shows the median.

b) The same as in a) but in VWM task.

c) The same as in b) but in CDM task.

d-f) The same as in a-c), but for monkey B dorsal array.

g-i) The same as in a-c), but for monkey T ventral array.
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Margolis, D.J., Lütcke, H., Schulz, K., Haiss, F., Weber, B., Kügler, S., Hasan,
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