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Primacy of vision shapes behavioral
strategies and neural substrates of spatial
navigation in marmoset hippocampus

Diego B. Piza 1,2, Benjamin W. Corrigan 1,2,3, Roberto A. Gulli 4,
Sonia Do Carmo 5, A. Claudio Cuello 5, Lyle Muller 2,6 &
Julio Martinez-Trujillo 1,2,7,8,9

The role of thehippocampus in spatial navigationhas beenprimarily studied in
nocturnal mammals, such as rats, that lack many adaptations for daylight
vision. Here we demonstrate that during 3D navigation, the common mar-
moset, a new world primate adapted to daylight, predominantly uses rapid
head-gaze shifts for visual exploration while remaining stationary. During
active locomotion marmosets stabilize the head, in contrast to rats that use
low-velocity head movements to scan the environment as they locomote.
Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions pre-
dominantly show mixed selectivity for 3D spatial view, head direction, and
place. Exclusive place selectivity is scarce. Inhibitory interneurons are pre-
dominantly mixed selective for angular head velocity and translation speed.
Finally, we found theta phase resetting of local field potential oscillations
triggeredby head-gaze shifts. Ourfindings indicate thatmarmosets adapted to
their daylight ecological niche by modifying exploration/navigation strategies
and their corresponding hippocampal specializations.

The hippocampus is a phylogenetically ancient structure of the
mammalian brain that has been implicated in spatial memory and
navigation1–3. Understanding how the hippocampus supports a cog-
nitive map-like representation of the outer world first came from
recordings of single-neuron spiking activity in freely moving rats,
describing individual neurons that selectively increased their firing
rate when subjects occupied a specific location within a maze1,4. Fol-
lowing the discovery of place cells, a rich diversity of spatial encoding
neurons has been reported within the hippocampal formation and in
functionally related brain areas5–13. Based on the results of spatial
navigation studies in rodents, the hippocampus has been deemed a
Global Positioning System (GPS) that enables the formation of a cog-
nitive map of the environment, evidence supporting this has been

consistently found in a multitude of conditions, like during
microgravity14 and in volumetric space15. However, recent navigation
studies in primate species such as macaques and marmosets have not
replicated the range of neuronal selectivities found in the hippo-
campus of rats and mice16,17. Thus, it is unclear whether the analogy of
the hippocampus as a GPS generalizes to the aforementioned primate
species.

In primates, hippocampus studies are much scarcer than in rats
and mice. Some studies in macaque monkeys have reported that
neurons in the hippocampus encode the direction of the subject’s gaze
in space (view)16,18–25. It has been proposed that diurnal primates’ highly
developed visual capabilities26 may have shaped neuronal selectivities
in the hippocampus20,27,28. Indeed, macaques and marmosets with
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diurnal lifestyle and foveal, stereoscopic color vision, havedeveloped a
head–gaze control system that allows orienting the fovea toward
locations of interest while inspecting visual scenes29–31. However, sev-
eral studies in non-human primates (NHPs) have mainly used para-
digms in which the subject is placed in a primate chair with the head
and/or body restrained while performing visual tasks on a computer
screen32–34. These experimental paradigms may deprive the hippo-
campus of multisensory inputs such as vestibular and proprioceptive
that occur during real-world navigation.

A few studies in rhesusmacaques and squirrelmonkeys16,35–37 have
reported that some hippocampal neurons are tuned for variables
related to place, gaze direction or view, head movements and the
interaction between view and place. One study trained marmosets to
navigate a linear maze under constrained conditions (tethered) and
described the existence of place-like cells in the hippocampus17.
Interestingly, they describe that rhythmic hippocampal theta oscilla-
tions are not omnipresent during locomotion-exploratory behavior17,
as is the case in mice and rats3,38. In other mammalian species, such as
the Egyptian fruit bat39 theta oscillations in the hippocampus occur in
short bouts. Finally, some studies have documented that in humans
andmacaquemonkeys, theta oscillations are coupled to saccades, and
they have variable frequencies40–42.

In the present study, we test the hypothesis that diurnal primates
have developed different exploration–navigation strategies compared
to nocturnal rodents such as rats, and that such strategies have shaped
the physiology of the hippocampus. We investigate the
exploration–navigation strategies of marmosets during unrestricted
3D foraging and compare them to those of freelymoving rats.We built
a setup that allowed for continuous tracking of the marmoset body
position and head direction in 3D and recording neural activity from
the hippocampus (CA3 and CA1) wirelessly. We found that marmosets
navigate 3D environments using quadrupedal locomotion, during
which the head–gaze remains relatively stable. They make frequent

stops, during which they execute sequences of rapid head–gaze
movements toward locations of interest (visual exploration). This is
different from rats that oftenmove their heads at low velocities during
locomotion, “scanning” the environment with their whiskers43. Addi-
tionally, we use wireless recordings of neural activity and demonstrate
that marmoset hippocampal neurons in subfields CA3 and CA1 pre-
dominantly encode a mix of variables related to 3D head/gaze direc-
tion, speed and position in space. We found a predominance of 3D
view, head direction and spatial position coding in putative pyramidal
(principal) cells, and a mix of 3D angular head velocity (AHV) and
translation speed (TS) in putative interneurons. We demonstrate that
from small ensembles of mixed selective neurons, weakly tuned for
spatial position, we could reliably decode the subject’s position in the
maze. Finally, we demonstrated that rapid head–gaze movements
reset local field potentials (LFP) theta oscillations in the hippocampus,
which coincides with an increase in the response of interneurons fol-
lowed by modulation of pyramidal neurons’ firing.

Results
Spatial exploration strategies in marmosets and rats
We measured position and head direction signals in two freely
moving marmosets (one male and one female) while they foraged
through a 3D maze searching for reward (e.g., condensed milkshake
or marshmallows; Fig. 1a; Figs. S1g, S2a; “Methods”). A reward was
delivered at 1 of the 12 possible maze locations randomly selected
(see below), by either cueing the subject with an LED light or waving a
hand at the reward location; this reward schedule was used to
encourage navigation of the 3Dmaze. Recorded data consisted of six
different variables, three for the position of the subject in the maze
(horizontal or Xp, depth or Yp, vertical or Zp), and three for rotational
head direction (Xh, Yh, Zh) yaw, roll and pitch. Body position signals
were low-pass filtered at 4 Hz. TS was calculated from the position
signals (see “Methods”).
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Fig. 1 | Behavioral setupanddata traces. aTop: recording chamber capcoverwith
a schematic of marker positions that allow tracking position and direction of the
subject’s head. Bottom: a schematic of the maze and wireless recording setup.

bData traces with three example single cells. The type of signal and corresponding
units are indicated. In the spike rasters, each vertical line indicates an action
potential.
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Xh, Yh, and Zh rotation vectors were used to calculate the AHV (see
“Methods”).We then classified rapid translation or rapid head rotation
movements based on a minimum speed/velocity threshold (higher
than 15 cm/s TS and 200°/s AHV, for body translation and head rota-
tion movements, respectively) and amplitude threshold (30 cm and
16° for body translation and head rotation movements, respectively).

We observed that during foraging marmosets alternate between
periods in which the subjects translate in 3D space (quadrupedal
locomotion) while the head remains “fixed” relative to the body, and
periods in which they stop translating in space (body stationary), and
the head frequently rotates relative to the body (Supplementary
Movie 1). During the translation periods, subjects were observed to
travel most paths usingmultidirectional trajectories (multiple heading
directions), spanning all quadrants (Fig. S3a, b). During the body sta-
tionary periods, they explore the environment through frequent rapid
head movements that end in gaze fixations44, resembling the way
humans and other primates freely explore visual scenes30.Wewill refer
to these rapid head movements as head–gaze shifts since the main
goal is to align the gaze with objects/locations of interest. To corro-
borate this observation, we computed translation trajectories and
associated velocities. Indeed, marmosets alternated between transla-
tions during which head–gaze movements were scarce (Fig. 2a, left,
blue trajectories) and stops during which head movements were fre-
quent (Fig. 2a, left, red dots).

To contrast the navigation strategies of marmosets and rats, we
performed the same analyses in a dataset available online (CRCNS.org,
Data sharing, hc-2data set) collectedwhile ratswere foraging in amaze
searching for rewards after being habituated for at least 3 days to the
arena. Rats were video-tracked (sampled at 39.06Hz) using two LEDs

of different colors, placed on the front and back of the head, from
which the position and head direction can be measured45. Rats are
nocturnal; their vision has adapted to detect motion in dim light
conditions. Their retinas possess ultraviolet-sensitive cones, and the
majority of their optic nerve axons target the superior colliculus (SC)
rather than the lateral geniculate nucleus46. Although rats possess
visual capabilities and can perform visual tasks47, they have no well-
defined fovea, their spectral sensitivity is considerably smaller than
that of diurnal primates, and the anatomical position of their eyes does
not enable stereo vision to the same degree as front-positioned eyes
primates46,48. Consequently, rats must rely to a larger degree on
olfaction and whisking to sense the environment. Most of the rat’s eye
movements are often disconjugated49 and stabilize the eyes against
movements of the head.

We found that rats’ head movements often occurred simulta-
neously with the body translation movements during locomotion
(Fig. 2a, right, greendots). Inmarmosets, 80% (99% confidence interval
[79%, 80%]) of the headmovements occurred during body stops while
in the rat only 14% (99%, confidence interval [12%, 14%]) of the head
movements occurred during body stops (Fig. 2b, left pie chart). On the
other hand, in marmosets, only 20% (99% confidence interval [19%,
20%]) of the headmovements occurred during body translations while
in rats 86% (99% confidence interval [85%, 87%]) of the head move-
ments occurred during translations (Fig. 2b, right pie chart). The range
of TS and AHV in the marmoset appears larger than in the rat which
may reflect different adaptations in the two species. The AHV in the
marmoset has a long tail along the X-axis corresponding to low TS
compared to the rat (Fig. 2b). This is due to the high frequency of rapid
head–gaze movements in the marmoset when the body is stationary.

Fig. 2 | Exploration strategies in marmosets and rats. a Selected trajectory
examples of Subject C (left) and two different rat subjects (right) during foraging
(rat Subject A on the top panel and rat Subject B on the bottom panel). The size of
the marker is proportional to the time spent at that location, Red = rapid head
movement, Blue = body translation movement and Green = both head and body
movement were present. b Distribution of AHV vs TS, pie chart displays the per-
centageofheadmovements that happenduringbody translationmovement or rest
(defined as no body movement present), for both marmoset (left) and rat (right).

cMean values for themain sequence of headmovements for bothmarmoset (head
and eye movements) and rat (head movements), error bars correspond to 95%
confidence interval. A Naka–Rushton function was fit to the mean values (dashed
line), two-sided Wilcoxon signed-rank test bootstrapped p values (marmoset head
movement data were re-sampled tomatch rat headmovement counts, this process
was repeated 500 times) are displayed on a log-scale (cyan dots) and median p
values are shown aspink line anddots.d Schematic of the two different exploration
strategies observed in marmosets and rats during foraging.
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Rapid head–gazemovements in themarmoset have the signature
of gaze shifts composed of coordinated movements of the eyes and
the head. The main sequence, described as the relationship between
the amplitude and peak velocity of eye saccades has been used to
characterize gaze shifts50. During gaze shifts the peak velocity/speed
increases monotonically with increases in head movement or saccade
amplitude, progressively saturating for large movements30. Marmoset
rapid head movements, much like eye movements, are stereotyped
ballistic movements used for visual exploration; and the main
sequence has been used to describe their kinematics44. We hypothe-
size that in the marmoset the main sequence of the head movements
will follow a similar profile as the main sequence of gaze shifts in
macaques. On the other hand, rats, lacking a sophisticated head–gaze
apparatus would systematically show lower peak velocities relative to
marmosets.

To test this hypothesis, we computed the main sequence of head
movements (movement amplitude vs peak velocity) in both species. In
both,marmosets and rats head peak velocity increased as a function of
movement amplitude (Fig. 2c) indicating a general kinematic principle
also reported in other species51. Importantly, head movements of the
same amplitude have higher mean peak velocity in the marmoset than
in the rat (two-sidedWilcoxon signed-rank test, p < 5 × 10−324, Z = 113.8).
The maximum response (Rmax) of a Naka–Rushton function fit to the
velocity as a function of movement amplitude is higher for marmosets
compared to rats (795°/s vs 430.9°/s; Fig. 2c, Fig. S1c, d). These results
are consistent with marmosets’ use of head–gaze shifts to visually
explore the environment during body stops to position and stabilize
the fovea on objects of interest. On the other hand, rats use head
scanning mainly during locomotion to orient the whiskers and facil-
itate exploration52,53. Rats may also use vision but with their lack of

fovea and poor color and stereo vision, they may not require image
stabilization to the same degree as marmosets do49,54.

We did not measure eye position in the marmosets in the 3D
maze, but instead relied on head movements as a proxy for gaze
direction, thus marmosets may have moved the eyes-in-head during
exploration producing misalignments of head and gaze. We have
previously demonstrated in macaques that after a head–eye gaze shift
the eyes and head tend to be aligned at the final position51. However,
we tested marmosets during several sessions in which they were
seated on a primate chair, and we fixed the head while they explored a
visual scene on a computer monitor. We measured eye position and
computed the amplitude and peak velocity of eye-in-head saccades.
Interestingly, we observed that saccades were in their majority shorter
than 5° (Fig. 2c; Fig. S1e, f), which coincides with the lower limit of the
head movement distribution. So, if we were to estimate the gaze
position from the head direction in the marmoset, the error could be
as large as 5°. Since our goal was not to obtain an accurate estimate of
gaze position but to compare marmosets and rats’ visual exploration
strategies, we conclude our measurements have sufficient resolution
to justify our main conclusions.

Coding of space by single neurons in the freely moving mar-
moset hippocampus
We recorded the responses of single neurons and LFPs in the hippo-
campus of two common marmosets by implanting chronic microwire
brush arrays (MBA,Microprobes for Life Science, Gaithersburg,MD) in
the subfields CA3 (Subject P) and CA1 (Subject C). We verified the final
position of the electrodes using 9.4T MRI and micro-CT imagining co-
registration (Fig. 3a; Fig. S2b; “Methods”). Data acquisition was
accomplished using wireless telemetry (CerePlex Exilis, Blackrock
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Fig. 3 | Single neuron responses to view and place. a Top: MRI and CT imaging
showing the final electrode location. Bottom: 3D reconstruction of the segmented
hippocampus showing electrode location for Subject P (left) and Subject C (right).
bSchematic representationof the 3Dmaze.c Electrophysiological parametersused
to classify cells into putative pyramidal cells (n = 204) or putative interneurons
(n = 127), the cluster boundaries are calculated using the k-means algorithm.
d Single-cell example of a place cell. Firing ratemaps for bothplaces (left panels, 3D

trajectories colored with firing rate, black lines coming off the 3D maze indicate a
flat top viewof the top twofloors, gray lines are trajectories and reddots are spikes)
and view (right panels, unwrapped walls of the maze, color indicates firing rate
when view is projected at that location, on the right gray lines correspond to view
trajectories and red dots to spikes). The color indicates the firing rate. e Single-cell
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a mixed place and view cell (similar panel configuration as in (d)).
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Microsystems, Salt Lake City, UT) while the marmosets foraged for
rewards at reward ports of a 3Dmaze (Fig. 3b; “Methods”). We defined
view as the facing location of the marmoset at any given point in time
(linear projection of the head direction onto the walls of themaze, see
“Methods”)16. We recorded a total of 331 neurons in both subjects (178
in Subject C and 153 in Subject P).

Excitatory pyramidal neurons are commonly regarded as the cells
responsible for transmitting and processing spatial information in the
hippocampus1,55–57, while inhibitory interneurons have been associated
with the encoding of non-spatial variables like speed58, or with syn-
chronizing activity in the hippocampal network59. To quantify spatial
tuning to either placeor viewwith conventionalmethods,we classified
neurons based on their bursting properties and firing rate60–64 into
either putative interneurons or putative pyramidal cells (Fig. 3c), and
we used exclusively putative pyramidal cells to assess variables related
to spatial tuning. A total of 204 cells were classified as putative pyr-
amidal and 127 were classified as putative interneurons.

Some putative pyramidal cells showed selectivity for the subject’s
position in the maze while they were poorly selective for view (exam-
ple in Fig. 3d). Other cells show view selectivity but poor place selec-
tivity (example in Fig. 3e). Other cells show a mix of view and place
selectivity (example in Fig. 3f). For the analyses of spatial selectivity, we
calculated the spatial information content (SIC)65–67 of putative pyr-
amidal cells. The SIC quantifies the amount of information (bits) each
neuronal spike transmits about the location of the subject. SIC was
computed for each putative pyramidal neuron, and an SIC shuffled
control was computed by circularly shifting spike times by a random
duration a total of 5000 times. Neurons with SIC that exceeded the
95th percentile of the null distribution were classified as selective.
Overall, more neurons were classified as view cells than place cells
(Fig. 4a). We found that 66 (32%) of cells were place selective (Fig. 4b)
and 159 (76%) were view selective (Fig. 4c). For Subject C, out of all the
sampled view bins (106 total), 76.4% (81/106) (99% confidence interval
[64.5%, 88.4%]) had at least one cell that exhibited selectivity for that
bin. Similarly, for Subject P 78.3% (83/106) (99% confidence interval
[68.6%, 88%%]) had at least one selective view field. In contrast, of all
visited place bins (84 total), in both subjects, 25% (21/84) (Subject C
99% confidence interval [12.11%, 36.1%], Subject P 99% confidence
interval [14.1%, 34.2%]) had at least one selective place field.

Coding of speed by single neurons in the hippocampus of freely
moving marmosets
Neurons in the rodent hippocampus show selectivity for the TS of the
animal locomoting in a maze or running in a wheel11,12,58,68–73.

However, little is known about the presence of speed cells in the hip-
pocampus of NHPs. A previous study16 reported encoding of both TS
and AHV in freely moving macaques, mainly in putative interneurons.
We found no reports in the common marmoset.

For this analysis, we included both putative interneurons and
pyramidal cells. We found single neurons that vary their response rate
as a function of AHV (Fig. 5a, left) and TS (Fig. 5a, right). To quantify
speed encoding we calculated the speed score as defined in refs. 58,74
(Pearson correlation coefficient between the time series of firing rate
and either AHV or TS). To select the neurons that were responsive to
either AHV or TS, any given cell had to meet these two criteria: (1) as
reported by a previous study58, a speed score higher than 0.3, and (2)
the cell’s speed score had to be higher than the 95th percentile of
speed scores in a shuffle null distribution (1000 permutations calcu-
lated by circularly shifting the vectorized spike raster relative to the
equally sized speed vector) (Fig. 5b; Fig. S4f–i). We found a total of 43
(33%) speed-selective cells.

A significant amount of the speed cells encoded both, TS andAHV
(Fig. 5c, 20 AHV cells, 4 TS cells, 19 mixed cells). Interestingly, neurons
encoding AHV often show selectivity for only that variable, but most
neurons encoding TS also showed selectivity for AHV (AHV cells 90%
confidence interval [34%, 59%]; TS 90% confidence interval [1%, 13%]).
As a control we investigated whether speed cells were predominantly
putative interneurons (Fig. 5d, e; Fig. S4j, k, proportion of speed cells
that were putative pyramidal cells 90% confidence interval [3%, 18%];
proportion of speed cells that were putative interneurons 90% con-
fidence interval [82%, 97%]), furthermore, the median AHV and TS
score for the population of putative interneurons was higher than in
putative pyramidal cells (two-sided Wilcoxon signed-rank test, TS
p = 3 × 10−22, Z = 9.7; AHV p = 1.3 × 10−25, Z = 10.5) corroborating that, as
in the rat, speed tuned cells are mainly interneurons58.

Mixed selectivity in the marmoset hippocampus
To quantify mixed selectivity for the different variables (space, view,
head direction and speed) in the recorded neurons we use a general-
ized additive model75 (GAM) that fits the neuron’s response to beha-
vioral parameters described as the sumof fitted, cross-validated spline
functions. We trained two different model types, one for putative
pyramidal cells and the other for putative interneurons. The output
model can have either none, one (first-order model) or multiple vari-
ables (i.e., second- or third-order models) as significant predictors of
the firing rate of single neurons, we can then classify cells that encode
multiple variables as cells with mixed selectivity. For putative pyr-
amidal cells, the model included place, view, and head direction as
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predictors (Fig. 6a). The putative interneuronmodel includedAHV and
TS as predictors (Fig. 6c). Across all cell types, 174/331, 52.6% sig-
nificantly encoded at least one variable (putative pyramidal cells 73/
204, 35.8%; putative interneurons 101/127, 79.5%); amongst all encod-
ing cells, mixed selectivity was predominant over single selectivity
(162/174, 93.1% mixed selective; putative pyramidal cells: 67/73, 91.8%
mixed selective; putative interneurons: 95/101, 94.1% mixed selective).

In the putative pyramidal model (Fig. 6b), place was exclusively
encoded in combinationwith either view or head direction, therewere
no cellswhosefiring rate encodedonly place, with the largemajority of
cells significantly encoding the three variables (view: 3/204, head
direction: 3/204, view + head direction: 5/204, view +place: 4/204,
place + head direction: 5/204, view +place + head direction: 53/204,
Fig. S6 for rate map examples, Fig. S7a, b for individual marmoset
results). For the putative interneuron model (Fig. 6d; Fig. S7c, d), we
found 3/127 (2.4%) AHV cells, 3/127 (2.4%) TS speed cells and 95/127
(74.8%) mixed selective cells (AHV +TS). In summary, for the putative
pyramidal model, single behavior selectivity is dominated by visuos-
patial variables (view + head direction) rather than place alone. For the
putative interneuron model, selectivity was similar for TS and AHV.
Finally, for both putative pyramidal and interneuron cells, mixed
selectivity for combinations of different variables was predominant.

Ensembles of mixed selective neurons encode place
Our previous results demonstrate that individual cells within the
marmoset hippocampus are weakly selective for place, and rather
encode a combination of variables, with a higher proportion of cells
encoding view or head direction relative to place. This observation
may suggest that the amount of place-related information in the
marmoset hippocampus is relatively limited. However, previous
research has demonstrated that populations of neurons, referred to as
ensembles, can still contain substantial amounts of information about

task-related variables, even if individual cells are poorly tuned32,76,77.
Furthermore, numerous studies, conducted primarily in rodents have
amassed a wealth of evidence demonstrating that the subject’s posi-
tion can be decoded from the firing rate of hippocampal cell
ensembles69,78,79 achieving accuracies of ~10 cm (approximately
equivalent to the subjects’ body size)80. To further explore this issue,
we used firing rates of non-simultaneously recorded pseudo-
population of mixed selective putative pyramidal cells in areas CA3
and CA1 to decode the animals’ location in the maze.

We first divided the maze into two spatial regions (bins) per floor
(Fig. 7a). From the six resultant bins, we identified the four bins that
best-optimized visitation frequency and neuron counts across all ses-
sions for each subject, (Fig. 7a, d, top). Using firing rates obtained
during periods where the subject’s head velocity was low (<200°/s, see
“Methods”), we decoded the subject’s location employing a linear
multi-class support vector machine (SVM) classifier. To identify the
combination of neurons (ensemble) that provides the best decoding
accuracy, we used an “ensemble construction” method previously
described81,82. We iteratively tested combinations of different neurons
from a pool of a pseudo-population of putative pyramidal neurons. In
the first iteration, we train one classifier per neuron, and the neuron
exhibiting the highest decoding accuracy is then selected as the
“ensemble seed”, for the second iteration, we train all the possible two-
neuron combinations that include the previously selected units along
with the remaining units in the pseudo-population; then the best two-
neuron ensemble is selected. This process continued with each sub-
sequent iteration, involving the training of an n + 1 ensemble and the
selection of the “best ensemble”, until performance becomes asymp-
totic (e.g., at n = 20 cells). We constructed two different ensembles
using this method, one where the pool of neurons included all recor-
ded putative pyramidal cells, we called this the “all units best ensem-
ble” (pool size = Subject C 75 cells, Subject P 119 cells), and a second
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ensemble where the cells that significantly encoded at least one spatial
variable, as per the previous GAM analysis, were excluded from the
pool of neurons, we called this the “no significant units best ensemble”
(pool size = Subject C 61 cells, Subject P 78 cells). For both pools of
neurons, we only included cells from sessions where subjects sampled
each spatial bin at least 50 times. The latter was done to have sufficient
data to train the classifiers. We fit a Naka–Rushton function to the
decoder performance as a function of ensemble size and calculated
statistics on the fit coefficients.

We decode place significantly above chance level (1/4, 0.25) “all
units best ensemble” decoding accuracy (Fig. 7a, d, blue line; Fig. 7c,
f), Subject C = 0.45 (95% confidence interval [0.44, 0.46]); Subject
P = 0.49 (95% confidence interval [0.48, 0.5]). The “all units best
ensemble” decoding accuracy was significantly higher than the “no
significant units best ensemble” decoding accuracy (Fig. 7a, d, pink
line), Subject C = 0.42 (95% confidence interval [0.41, 0.43]); Subject
P = 0.42 (95% confidence interval [0.41, 0.43]). The latter indicates
that neurons with significant fits for the GAM model contributed
substantially to decoding accuracy. However, the fact that ensembles
of neurons without significant fits also produce decoding accuracies
higher than chance suggests that many of these neurons contain
information about place. We further tested whether our ensemble
construction method was effective in selecting combinations of the
most informative neurons from the pseudo-population by training a
decoder on “random combination ensembles”. We randomly gener-
ated 100 different and unique combinations of 20 cells and decoded
place from those ensembles (Fig. 7a, d, cyan line). The “random
combination ensemble” decoding accuracy was significantly lower

than the one of optimized ensembles, Subject C = 0.35 (95% con-
fidence interval [0.35, 0.36]); Subject P = 0.34 (95% confidence
interval [0.34, 0.35]).

Finally, we examined the encoding profiles of the neurons com-
prising the “all units best ensemble”. Specifically, we focused on
identifying the best-encoded spatial variable based on theGAMmodel.
We found that the cells part of the ensemble encoded a mixture of
view, head direction and place (Fig. 7b, e). Interestingly, despite place
being the decoded variable, there is a predominance of view and head
direction as the single cells’ best-encoded variables in the “optimized”
ensembles. The latter demonstrates that spatial position could be
decoded from our population of mixed selective neurons. Further-
more, it suggests that view andheaddirection canprovide information
about placeandmay explain the exploratorygaze behaviormarmosets
exhibit when stationary.

Marmoset rapid head movements trigger LFP theta phase-
resetting and modulation of single-cell responses
Rhythmic, LFP theta oscillations in the hippocampus have been widely
documented in rodents such as rats andmice3,38. Theta oscillations are
thought to coordinate hippocampal cell assembles, and it has been
proposed that they are involved inmemory formation83–85. However, in
some species like humans, macaques, marmosets and bats, theta
oscillations are not present as a rhythm during locomotion but appear
in short bouts16,17,86–88. In humans and macaques, saccadic eye move-
ments are thought to reset the phaseof theta oscillations40–42,89,90. Here
we hypothesize that head–gaze movements in the marmoset will
induce theta phase resetting, which modulates neuronal activity
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during visual exploration (when the animals acquire information about
the environment) aiding memory encoding.

We aligned the LFPs to the peak velocity of headmovements (see
“Methods”) and computed average LFPs (Fig. 8a). We also aligned
spectrograms corresponding to LFP traces and computed their
averages. We found the strongest power in the 4–15Hz band with a
peak at the theta frequencies (4–10Hz) around the onset of the head
movement (Fig. 8a).We observed an increase of theta phase alignment
(resetting) (Fig. S8a, b), along with an increase in Rayleigh test of
uniformity Z values during the peri-headmovement periods (Fig. S8c).

Critical Z values were significant (p < 0.01) starting at ~100ms prior to
headmovement peak velocity. To determinewhether head–gaze theta
phase resetting was accompanied by a modulation of neuronal firing
we obtained the average firing per single cell as a function of head
movement events. We found that in both putative interneurons and
pyramidal cells, spiking activity wasmodulated by the occurrence of a
headmovement (Fig. 7b; Fig. S9a–c). To quantify the precise nature of
this modulation, we calculated a firing rate shuffled distribution
through circular permutation of spike times, repeating the process
1000 times. Significancewas evaluated using eight different bins, each
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spanning 50ms, within a 400ms window (total of eight bins). The
center of the window was aligned with the peak velocity of each
detected head movement event in the recording session, with a range
of 200ms before and after the head movement peak velocity. Cells
were classified as upmodulated if the real mean firing rate exceeded
the 97.5th percentile of the mean shuffle firing rate at that bin and
across bins, downmodulated if themean firing rate was lower than the
2.5th percentile of the mean shuffle firing rate at any bin and across
bins, and down/upmodulated if their mean firing rate both exceeded
and was lower than the 97.5th and 2.5th percentile of the shuffle
respectively at different time bins.

We found that a lower percentage of putative pyramidal cells
(72/204, 35.3%) were modulated (Fig. 8c) in comparison to putative
interneurons (105/127, 82.7%). Furthermore, the average firing rate
maximaof all modulated putative interneurons peaked at 31.2ms after
the alignment 0 point (time from head movement velocity peak),
whereas for all modulated putative pyramidal neurons it peaked at
81ms, a difference of 49.8ms. When accounting for the type of
modulation (Fig. 8d), putative pyramidal cells seem more evenly split
betweendownmodulation (14.7%) andupmodulation (19.6%),whereas,
in modulated putative interneurons, upmodulation was most pre-
valent (66.9%), in comparison to downmodulation (6.3%). For both cell
types, down/upmodulation was relatively rare at 1% in putative pyr-
amidal and 9.5% in putative interneurons. The differences in activation
latencies and the proportion of the differentmodulation types suggest
that phase resetting may be causally linked to interneuron activation
that is followed by a range of modulation in pyramidal cells91–94.

Discussion
We used motion capture to track the behavior of freely moving mar-
mosets foraging in a 3D maze and recorded the responses of neurons
in the CA3 and CA1 regions of the hippocampus. We found that mar-
mosets explore the environment using alternations of body

translations and frequent stops. During translations head rotations are
constrained. During stops,marmosetsmake frequent rapid head–gaze
shifts to explore the visual scene. This strategy differs from the one of
rats, that frequently move their heads at low velocity “scanning” the
environment as they locomote. We found that putative pyramidal
neurons in the CA3 and CA1 regions mainly encoded a mix of view,
head direction and place. Putative interneurons encoded amix of AHV
and TS. We demonstrated that the position of the animal in the maze
(place) can be decoded from small ensembles of mixed selective cells,
despite the predominance of encoding of view and head direction.
Finally, we found that rapid head movements reset the phase of theta
oscillations in the hippocampus. Theta phase resetting is accompanied
by the activation of interneurons followed by a variety of modulations
in pyramidal cells.

Exploration strategies in marmosets and rats
Rats and mice have been the primary animal models used to study
spatial navigation95–98, with 1337 indexed publications in 2022
(Pubmed indexed search query: “Rodentia” AND “hippocampus/phy-
siology”). Studies in NHPs have been scarce (4 in 2022 in Pubmed
indexed search, query: “primates/physiology” OR “Callithrix/physiol-
ogy” OR “Macaca mulatta” AND “hippocampus/physiology”). There
has been a tacit assumption that results from studies in nocturnal
rodents such as mice and rats can be extrapolated to diurnal primates
such as macaques and humans. However, there are differences
between sensory systems and behaviors between nocturnal rodents
and diurnal NHPs that may be aligned with differences in how the
hippocampus processes information during navigation. For example,
rats and mice lack foveae, their eyes are displaced to the sides of the
face, and they lack the wide range of color vision of diurnal primates
like marmosets31,99. Rats can move their eyes independently, while
marmosets cannot; marmosets make conjugate eye movements that
preserve the alignment of the two eyes needed for stereovision31,49.
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Marmosets’ high acuity color and stereovision allow far sensing during
daylight to forage for fruit, trees, discriminate between conspecifics
during mating or social interactions, or escape predators. These spe-
cializations make them distinct from nocturnal rodents such as rats.

Rapid head movements are key to marmosets’ and other diurnal
primates’ efficient exploration of the environment via the far-sensing
capabilities of their visual system100. They have previously been
described in marmosets sitting in a primate chair44. In this study, we
report the presence of these highly stereotypical movements in a
marmoset navigating in 3D space. They followed the main sequence,
much like it has been described for eye–head gaze shifts inmacaques51

and predominantly occur when the subjects are stationary, visually
exploring the environment (visual navigation). We reasoned that
because vision is “far sensing” and the high-resolution fovea allows for
the estimation of objects’ features, animals do not need to actively visit
locations to identify potential targets and landmarks for navigating.
They can also identify depth stationary cues such as size differences,
objects’ occlusion cues, and dynamic cues using motion parallax that
allow evaluating distances to target and path planning before trans-
lating in 3D space101,102.

In contrast,mice and rats use a different strategy likely adapted to
their nocturnal lifestyle. Their limited color vision, lack of a fovea, and
the absence of daylight may have evolved in the use of near-sensing
capabilities to identify target objects during navigation and the lack of
rapid head–gaze movements. Instead, they use slower head move-
ments during navigation likely to position the whiskers or orient their
olfactory apparatus toward possible targets or landmarks. In the pre-
sence of poor illumination, rats would more frequently need to use
path integration during self-motion for exploring the environment
relative to marmosets.

The divergence between primates and rats may be traced to their
ancestors.During early evolution,whenmammalswere predominantly
nocturnal to escape predation by dinosaurs, mostmammals regressed
their visual capabilities, more suited for daylight, while expanding
somatosensory, olfactory, and hearing capabilities better suited for
nocturnal activities100. However, primates may have escaped the pre-
extinction nocturnal bottleneck by developing a sophisticated visual
system, expanding the pathway from the retina to the thalamus and
the visual cortex. This reliance onhigh-resolution stereo vision allowed
foraging for insects and fruit in the distal branches of trees but may
have produced a regression of their olfactory and somatosensory
capabilities (e.g., whiskers). After the extinction of the dinosaurs, 66
million years ago, primates safely invaded the day-life niche further
and disproportionally developed their already expanded visual system
to incorporate color vision and extraordinary stereo and object
recognition abilities100. This may have led primates, such as marmo-
sets, to adopt more efficient navigation strategies relying on the far-
sensing power of vision and consequently shaping neuronal selectiv-
ities in the hippocampus. In contrast, rats never escaped the nocturnal
bottleneck and therefore, like their mammalian ancestor, preserved
their near-sensing capabilities such as whiskers, olfaction and audition
to support navigation. Indeed, our data indicate that the common
marmoset, a diurnal primate, uses different strategies to explore and
navigate the environment compared to the rat, a nocturnal dweller.
These differences may have impacted the physiological mechanisms
of spatial navigation and specializations in the hippocampus of the two
species. Further experimentation using similar behavioral paradigms
and readouts (habituation times, mazes, tasks) between both species
would be beneficial to systematically bridge this gap.

Representation of space in the marmoset hippocampus
Previous studies in rats have shown that place cells form the basis for
an internal representation of a spatial cognitivemap1,4. The percentage
of all hippocampal pyramidal cells that can be considered place cells
ranges from 20 to 25%4,103. The identification of place cells in the rat

hippocampus is astonishingly clear and replicable1,4. Studies in other
species such as nocturnal bats have also reported place cells87,104. In
primates, reports of place cells are scarce. Instead, studies using virtual
reality in macaques have shown a representation of spatial locations
that depend on objects-context32 or landmarks105. A recent study in
freely moving macaques16 found that classic place cells are rare (7% of
all cells). They reported that about 26% of all cells encoded place, but
other variables such as facing location were better encoded. The only
study in marmosets17 showed that when subjects moved on a linear
“L-shaped” track, 14.1% of cells could be classified as place cells.
Interestingly, they reported that 77.9% of these cells were directionally
selective, which could be interpreted as encoding head direction or
view, as in the macaque study16.

Our study was conducted in freely moving marmosets in a 3D
environment, where these small primates naturally forage. Although
we found neurons that encoded view and place in the 3D maze, we
show a predominance of variables related to the head direction and
view. Place encoding occurred in 30.4% of all cells; however, we
observed that place was exclusively encoded in conjunction with
either view or head direction, and most frequently both.

Our results may be related to changes in the brain structure and
function happening in diurnal primates such as the expansion of areas
related to vision, and the emergence of a high-resolution fovea100.
Diurnal primates have also evolved a sophisticated eye–head appara-
tus that allows coordinated gaze shifts to stabilize the fovea on objects
of interest. Vision, as a far-sensing strategy has shaped diurnal pri-
mates’ lifestyle and the physiology of the hippocampus. From an
anatomical connectivity perspective, the primate hippocampus
receives more visual information than that of the rat106–110; from a
behavioral perspective, as shown in this study, there is a prevalence of
navigation strategies that favor visual exploration behavior in pri-
mates. We argue that primate brains developed navigation and spatial
memory systems adjusted to their diurnal lifestyles that heavily rely on
visual cues and landmarks rather thanonmaps of space. One issue that
remains unclear is whether the entire range of selectivities described
as part of the navigational GPS in the entorhinal cortex of rodents (e.g.,
grid cells, border cells) is also present in primates. One study in
macaques has described grid cell-like gaze selectivity in the entorhinal
cortex when subjects inspected a visual scene111. This, however, is very
different from grid cells that triangulate the animal’s position in the
environment.

We found no evidence of cells that encoded place independent of
view or head direction. As described above, marmosets exhibit a pre-
ference for visual exploration over physical visits to locations, this can
potentially introduce biases in the representation of spatially relevant
variables. These biases might account for some of the differences in
spatial encodingweobservewith respect to rodents.We recognize the
necessity for different experimental controls to ensure a more equal
sampling of space and view.

It is important to note that in our study, occupancy was biased
toward reward sites, which are at fixed locations in the maze. This
could have had implications in how place and view was represented in
neuronal populations, and it is different from conventional definitions
of place cells in rodent literature. In classical rodent experiments,
investigators randomly scatter rewards throughout the maze, and
spatial selectivity analyses are limited to translationmovement epochs
(SIC analysis with only translation movement epochs can be found in
Fig. S4a). In our experiments, we did corroborate that each view field
from all view selective cells was sampled from at least three different
locations (Fig. S4c). In fact, we found that most view fields were sam-
pled from10+unique locations thatwere spread apart fromeach other
as far as 100 cm (Fig. S4d) and were viewed from different angles
(60°+, Fig. S4e). Exploration biases seem to be a challenge when test-
ing animals on volumetric mazes, particularly with regard to spatial
sampling along the vertical dimension, as non-flying animals tend to
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use different strategies to travel horizontally than vertically15,112,113.
Additional experimental controls might be needed to better disen-
tangle the contribution of 3D volumetric place and view on neuronal
firing, and its contrast with occupancy.

Additionally, themedian SIC corresponding to view is significantly
higher during epochsof slowor noheadmovementwhen compared to
epochsof rapidheadmovement (two-sidedWilcoxon signed-rank test,
p = 8.29e−15, Z = 7.76, Fig. S4b). This suggests neuronsmay respond to
visual targets being observed during fixations rather than themere act
of shifting gaze through space. It also raises questions as to whether
this response stems from memory, object recognition, or purely spa-
tial view encoding. Furthermore, view projection on the maze’s walls
does not account for possible encoding of local landmarks and cues
situated inside themaze (climbing ropes, climbingplatformandaccess
holes, see Supplementary Movie 1, Fig. S2a) that may be the target of
fixation. We did as much as possible to minimize those landmarks but
further investigation is needed to control for these factors and com-
prehensively determine local landmark contributions to neuro-
nal firing.

Representation of speed in the marmoset hippocampus
While there is abundant evidence of speed-correlated activity in the
hippocampus of rodents11,12,58,68–73, there is limited evidence in pri-
mates. A study16 reported significant encoding of both linear speed and
angular velocity (TS and AHV in our study, respectively) in freely
moving macaques, where most of these speed-encoding cells were
putative interneurons. Similarly, a study found hippocampal cells in
macaque monkeys, that responded to linear and rotation-assisted
motion (monkey sitting in a remote-controlled robotic platform)114,
suggesting there are both vestibular and optic flow inputs to these
speed-encoding cells. Our study reports speed cells in the freely
moving marmoset in a 3D environment. Moreover, we show that AHV
was encoded to the same level as TS and that most cells had mixed
selectivity for both variables. In agreement with rodent literature, the
strongest speed-correlated signal was observed in putative
interneurons58.

One notable difference from findings made in rodents is the
prevalence of AHV encoding inmarmoset CA3/CA1 neurons. Encoding
of AHVhasbeen reported in rodent studies almost exclusively in either
parahippocampal regions (MEC, parasubiculum, presubiculum)115,
retrosplenial cortex116, or sub-cortical regions associated with vestib-
ular information processing (lateral mammillary nuclei, thalamic
nuclei and striatum)7,8,117,118. The encoding of AHVhasbeen theorized to
serve an essential role in the generation of grid cells119,120 or the general
processing of self-motion74,121,122. The function of head-speed cells in
the marmoset is not clear but may be related to the signal that pro-
duces head–gaze theta phase resetting.

Ensemble coding of space in the marmoset hippocampus
Our results demonstrate that space can be decoded from a pseudo-
population of neuronal ensembles’ firing activity in the hippocampus
regions CA1/CA3 of marmosets (Fig. 7). Remarkably, the neurons that
yield the highest decoding accuracy, are not highly selective to specific
places. Instead, these neurons exhibit mixed selectivity for view, head
direction and place (Fig. 7b, e). Numerous prior works have explored
how neuronal mixed selectivity supports efficient representation and
processing of complex information in the brain76,77,123. Mixed selective
neurons exhibit modest selectivity for individual features, but
increased selectivity for combinations of twoormore features123. It has
been theorized that neuronal ensembles face limitations to flexibly
represent feature dimensions across different behavioral contexts
when neuronal selectivity is highly specific123. This limitation becomes
particularly prominent when considering that ensembles are con-
strained by a finite number of neurons. To overcome these limitations,
neuronal networks may leverage between specificity and flexibility of

neuronal selectivity77. This approach is especially advantageous when
high-dimensional representations are required. Codingof spacecanbe
regarded as highly dimensional when encompassing a multitude of
sensory inputs66,124,125. We propose that the presence of highly mixed
information in the marmoset hippocampal neuronal ensembles sup-
ports reliable representations of space.

One contrasting difference between the neuronal responses
observed in this study (and the NHP hippocampus in general), and
the ones commonly observed in nocturnal rodents, is the pre-
dominance of variables directly related to gaze such as view and head
direction16,18,20,35. Marmosets high-resolution foveal vision might
allow anchoring of place representations and future paths for navi-
gation to visual/scene cues, such as landmarks identity, depth, ego-
centric/allocentric location and the spatial relationships between
them extracted from visual exploration via gaze shifts21. In contrast,
“near” sensory cues like olfaction and whisking are readily available
to nocturnal rodents such as rats. With heads positionedmuch lower
above the ground relative to marmosets and a nocturnal lifestyle
prioritizing places with poor illumination, rats may be “less” visually
driven. However, recent work has demonstrated diverse selectivity in
the hippocampus of rats; implementation of multivariate encoding
analyses and novel experimental paradigms in previous studies
provide evidence that place cells in the hippocampus of rats also
encode variables beyond place, like position, distance and direction
of motion of a bar of light under body fixed conditions126, or be
modulated by head direction, the presence of visual and olfactory
cues or immediate experience12,125,127–129. Evidence from multiple
species has consistently found a high degree of mixed selectivity in
hippocampal neurons, observed across multiple species:
rodents127,128,130–132, bats133, rhesus macaques16, marmosets134 and
humans navigating in virtual reality135. Thus, mixed selectivitymay be
the norm in hippocampus neurons. However, mixed selectivity
seems to be biased to overrepresent certain variables depending on
the ecological niche of the species. For the case of marmosets,
encoding of visual variables related to gaze orientation seems to be
predominant in hippocampal neurons, at least in the daylight con-
ditions in which diurnal primates usually forage.

Indeed, we found that place can be decoded from ensembles with
a predominance of view and head direction mixed selective neurons.
However, the decoding accuracy is lower than the one reported in
rodent literature78,136, where the decoded spatial resolution is often
lower than 5 cm. It is possible that our analyses might have been lim-
ited by the size of the decoded spatial bin (30 cm× 60 cm), which is
due to theneed to include sufficient samples of space. The information
provided by these ensembles about landmarks in the environment
(allocentric coding) and self-orientation relative to them (egocentric)
can be sufficient to position oneself in space (origin of the place
information) and aid goal-directed navigation137 and the formation of
spatial memories. It may also provide flexibility to adjust navigation
strategies to the task demands (e.g., egocentric rather than allocentric
representations32).

Head–gaze movement phase resetting
It has been shown that memory encoding involves interactions
between theta oscillations and incoming sensory signals into the
hippocampus138. Indeed, responses of hippocampus neurons to sen-
sory events are synchronized to a certain phase of theta
oscillations139,140. It has been proposed that theta oscillations are like a
metronome for coordinating sensory information transfer from cor-
tical areas to the hippocampus138. This theory matches data from
rodents; however, it has a shortcoming when extrapolated to humans.
In humans and NHPs, hippocampus theta oscillations are not rhythmic
but appear in short bouts16,17,141,142. Interestingly, some studies have
reported that theta oscillations are locked to the execution of
saccades42, a phenomenon known as saccade phase resetting40.
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Rapid head movements in species of primates are used to direct
gaze toward spatial locations29,51. In marmosets head velocities reach
values above that of eye velocities during saccades made with the
head restrained (Fig. 2c). Here we report an LFP modulation descri-
bed as head–gaze theta phase resetting27,42,89,143,144. Moreover, a sig-
nificant percentage of neurons’ firing rate wasmodulated during and
following head movement initiation. Notably, in putative inter-
neurons the most common form of modulation was an increase in
firing rate (upmodulation), but in putative pyramidal cells, it was
evenly split between up and downmodulation (Fig. 8d). The peak of
themodulation effect was also found to be different across cell types,
where putative interneuron modulation peaked before putative
pyramidal cell (49.8ms faster, Fig. 8c). Together, this suggests that
the signal triggering head movements (e.g., a corollary discharge
(CD) signal) initially activates interneurons that may reset back-
ground noise in pyramidal neurons that can be differentially acti-
vated by incoming sensory inputs. In our analyses, we aligned neural
data to head peak velocity because we did not have estimates of eye
movement latency. It is well known that saccadic eye movements
modulate LFP power and phase, as well as neuronal firing in the
primate hippocampus40,89,91. We observed modulations of both LFP
and firing rate ~120ms before the head peak velocity (Fig. 8a–c)
which could correspond to a similar phenomenon to the one
observed during saccades, which classically exhibit shorter latency
compared to head movements51. Future experiments combining eye
trackingwith freelymoving head recordingsmight help elucidate the
latency profiles of the modulation found in our work and its rela-
tionship to saccades and head movements.

We propose that head–gaze theta phase resetting may act as a
“single pulse metronome” that synchronizes stochastic firing in neu-
ronal ensembles before the eyes land on a target, allowing incoming
sensory signals to be “distinguished” from the background noise of the
circuit. The activation of inhibitory interneurons may be causally
linked to the process of resetting neuronal ensembles and decreasing
noise, while the modulation in putative pyramidal neurons may be
directly related to the arrival of sensory inputs to ensembles of pyr-
amidal cells and encoding of sensory signals. This mechanismmay be
the driver of theta oscillations in diurnal mammals with foveal vision
that explore the environment through voluntary gaze shifts. It has
been further proposed that during a gaze shift a CD signal originating
in the SC reaches the thalamus and then via the nucleus reuniens
reaches the hippocampus91,94. However, a CD signal that reaches areas
of the neocortex seems to do so via the medial dorsal thalamic
nucleus145 and plays roles such as inhibiting visual processing during
saccades and remapping of receptive fields145–148. It is currently unclear
how the CD signal in the hippocampus and neocortical areas are linked
and how it relates to the head–gaze phase resetting phenomenon
reported here.

Our results provide evidence that freely moving marmosets use
different exploration–navigation strategies compared to rats. These
strategies have shaped physiological adaptations in the hippocampus.
Cognitive maps of space in the marmoset and likely in other diurnal
primates may be driven by mixed or conjunctive coding of gaze-
related variables that enable encoding of visual features and object
relationships used as landmarks for navigation. Head–gaze phase
resetting seems to play a role in synchronizing theta oscillations to
increase the efficiency of information encoding in the marmoset
hippocampus.

Methods
Statistics and reproducibility
A description of statistical techniques and a table of tests used in the
main figures has been provided in the supplement. No statistical
method was used to predetermine sample size.

Ethics statement
The animal care and handling procedures, encompassing basic care,
housing and husbandry, animal training, surgical procedures and
experiments (data collection), were granted approval by the University
of Western Ontario Animal Care Committee. This approval guarantees
adherence to federal (Canadian Council on Animal Care), provincial
(Ontario Animals in Research Act), regulatory (e.g., CIHR/NSERC) and
other national CALAM standards, ensuring the ethical use of animals.
The animals’ physical and psychological well-being was regularly asses-
sed by researchers, registered veterinary technicians, and veterinarians.

Animals
Two adult (1 female, aged 5 y and 1 male, aged 3 y) marmosets (Calli-
thrix jacchus) were utilized for all experimental procedures described
in this study. The subjects were paired-housed in custom primate
cages located within the primate facility at the Robarts Research
Institute. A 12-h light cycle was maintained (Day: 7 a.m.–7 p.m., Night:
7 p.m.–7 a.m.).

The subjects were provided with a standard diet of dry food for-
mula supplemented with fruit, nuts, and various protein sources. To
facilitate positive interactions and ease of handling, subjects were
gradually acclimated to gentle glove handling by the experimenters.
Additionally, they were trained to enter plexiglass transfer boxes and
navigate through the experimental setup using positive reinforce-
ment, obtaining a liquid reward of condensed milk or gum arabic
(Acacia), administered either directly by the experimenter or delivered
via metal cannulas placed inside the maze.

Experimental setup and behavioral paradigm
Subjects were trained to forage for reward in a rectangular trans-
parent maze with three different vertical levels (3D maze, Fig. 1a) for
at least 2 weeks before recording. For the majority of the recording
sessions, the subjects were placed in the chamber alongside their
cage partner with the purpose to alleviate stress. Reward locations
were placed at four different positions in each level of the maze, two
on one side and two on the opposite side, resulting in a total of 12
reward locations across the maze (Fig. 3b). Each reward location
consisted of a small panel containing an LED and a liquid reward
delivery system controlled by a solenoid via the NIMH
MonkeyLogic149 software. The subject was cued by flashing the LED.
When the subject approached the LED location and was closer than
15 cm to the reward delivery site a sound was played, and a reward
was delivered. After that another, different LED was flashed, and the
sequence of events was repeated. We also rewarded the subjects
manually by waving a hand at the reward location and delivering a
marshmallow when the subject approached. Recording sessions
lasted for as long as the subject was willing to continue foraging
(~40–60min).

Motion capture 3D tracking
A total of 14, synchronized, cameras (Optitrack, Flex 13, Corvallis, OR),
were placed around the 3D maze in a configuration that optimized
coverage and minimized occlusion. Video frames were acquired at
60Hz. The cameras emit 850nm infrared (IR) light and are fittedwith a
lens filter for IR light.

A recording chamber was placed on the skull of the subjects that
allowed to house the electrodes and wireless recording headstage, a
3D printed cap covered the recording equipment and six spherical
retro-reflective markers (4mm diameter, Facial Marker, Optitrack)
were arranged in a unique geometric configuration (rigid body) and
affixed on top of the cap.

Before every recording session, the setup was calibrated using
a calibration wand (CWM-125, Optitrack). The wand consists of
three markers of known dimensions and distance to each other that
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are used to compute a volumetric world coordinate system mea-
sured in metric units via triangulation algorithms. A calibration
square (CS-100, Optitrack) was used to define the zero point (where
the horizontal or X, depth or Y, and vertical or Z axes intercept) and
the plane corresponding to the ground (plane parallel to the maze
floors); the calibration square and subsequently the zero point was
always placed at the lowest point of the south–west corner of the
maze. This calibration will be used by the tracking software
(Motive version 2.0.2, Optitrack) to compute the position and
orientation of the cameras; the calibration step is essential to tri-
angulate the 3D position (Xp, Yp and Zp, in metric units) of the
markers from the individual camera’s 2D images.

After the 3D position of the cluster of cap markers is estimated,
the rigid body is tracked as a unique object at the pivot point (origin of
the rotational axes roll, pitch and yaw), this point is manually placed at
roughly the intersection between the vertical axis of the neck of the
subject and the visual axis (eye level). The roll axis is manually aligned
so that it is parallel to the estimated visual axis (red axis, Fig. S1a, b), the
pitch axis is manually aligned parallel to the maze floors (estimated
using thegroundplane, blue axis, Fig. S1a, b) and the yawaxis is aligned
parallel to the vertical plane (plane perpendicular to the ground plane,
green axis, Fig. S1a, b).

Implantation surgery and electrophysiological recordings
Prior to every surgical or imaging procedure, subjects had their food
removed at a maximum of 4–6h before the procedure while maintain-
ing free access to water. For short-duration procedures like CT imaging,
subjects were sedated via intramuscular injection of Ketamine (15mg/
kg) andMedetomidine (0.0125mg/kg). For longer-duration procedures,
like MRI imaging and implantation of recording chamber and electro-
des, we used the same sedation protocol described above for induction
of anesthesia. Maintenance of anesthesia was then achieved through
continuous intravenous administration of Propofol (0.3mg/kg/min) or
via inhalation of Isoflurane (0.5%–2.0%). In certain cases, a combination
of both maintenance drugs was necessary. Post-operative analgesia was
administered for a minimum of three days using intramuscular Bupre-
norphine (0.01–0.03mg/kg) once to thrice daily and oral Acet-
aminophen (6–10mg/kg) twice to four times daily, analgesia was
continued beyond the initial three days as deemed necessary with
Acetaminophen only.

After co-registration of anatomical MRI (9.4T) and micro-CT
(150 µm) scans150–152 (3D Slicer software version 4.10, slicer.org), we
implanted a recording chamber “cap” (Fig. S1i, j) that allowed a 3D
printed grid to beplaced above the skull surface, each space in the grid
could be used as a fiducial to calculate the trajectory necessary to
reach the CA fields.We chronically implanted 32chmicrowires “brush”
array electrodes in the hippocampus’CA1 (SubjectC) andCA3 (Subject
P) (Microprobes, Gaithersburg, USA). The final position of the elec-
trodes was verified with post-surgical micro-CT imaging and registra-
tion to the pre-surgical anatomical MRI (Fig. 3a; Fig. S2b). In Subject P,
we used a semi-chronic electrode implant that consisted of a small
microdrive that allowed the electrode to be lowered after implantation
(2mm total range). We lowered the microdrive in increments of
70–150 µm, until we reached the end of the working range and finally,
took micro-CT images to verify the final position of the electrode.

Neural activity was recorded using wireless telemetry (CerePlex
Exilis, Cerebus Data Acquisition System, Blackrock Neurotech, UT,
USA) sampled at 30 kHz.

Data analyses and visualization
All analyses were performed using custom-built MATLAB scripts
(Mathworks Inc, version 2021b) unless otherwise specified. AMATLAB
wrapper was used to calculate the GAMs using PyGAM75, a Python
open-source resource. Colormap BrewerMapwas used to visualize LFP
power spectrum153,154.

Body translation speed
TS was defined as:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxÞ2 + ðΔyÞ2 + ðΔzÞ2

q

Δt
ð1Þ

where s is the TS of the rigid body, x is the position in the horizontal
axis, y is the position in the depth axis, z is the position in the vertical
axis and t is time.

Angular head velocity
The rotation vectors (pitch, raw and roll) were exported from the
motive software as rotation quaternions (q) of unit length, defined as:

q= q0 + iq1 + jq2 + kq3 ð2Þ

where q0, q1, q2 and q3 are real numbers, and i, j and k are imaginary
unit vectors.Where the real part is a scalar and the imaginary parts the
vector. In a system with three rotational axes (such as pitch, yaw and
roll), the alignment of two axes restricts the third. Where rotations
along the locked axes produce the same effect as rotations along the
combined axis, this is commonly referred to as gimbal lock. Qua-
ternion constructs avoid gimbal lock by representing space as a three-
dimensional sphere in four-dimensional spacewhere any loop along its
topology can be continuously contracted to a single point155, that is,
any twounit quaternions representing rotations can be connected by a
continuous path within this space and are considered simply
connected. Quaternions offer an advantage over traditional Euler’s
axis angles in that they are a more efficient way to compute rotations
and are not susceptible to gimbal lock.

The AHV was defined as:

ω=
4θ
4t

ð3Þ

where ω is the AHV, θ is the angular distance and t is time.
The angular distance θ between θt2 � θt1 was computed using the

MATLAB function dist (Robotics and autonomous systems toolbox).

Significant head and body movement classification
Significant head movements were defined as epochs where AHV was
higher than 200°/s and the amplitude of the movement was higher
than 10°.Movementswith velocities higher than 2000°/sweredeemed
artifactual.

Significant body translations were defined as epochswhere the TS
was higher than 16 cm/s and the amplitude of the movement was at
least 30 cm. Movements with speeds higher than 300 cm/s were
deemed artifactual.

Naka–Rushton function fit
We used MATLAB’s curve fitting function fit (non-linear least squares
implementation), to estimate the parameters Rmax, n, K and b of a
Naka–Rushton function:

R Xð Þ=Rmax
Xn

Xn +Kn

� �
+b ð4Þ

where X is the predictor variable, R Xð Þ is the response, Rmax is the peak
response, n corresponds to the exponent, K is the number of X at
which R Xð Þ reaches half of its maximum and b is an additive constant.

Head Direction
We considered the distinction between head direction and view as
illustrated by ref. 156 (Fig. S1h).
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The head direction is solved by the tracking software using a
custom arrangement of markers that creates a rigid body with pre-
defined XYZ axis angles. The axes are aligned to the subject’s head
anatomy and a pivot point is placed virtually in the neck, in a way that
the horizontal head direction of the rigid body runs along the midline
of the head and is parallel with the head direction and the vertical axis
perpendicular to the maze floors.

The tracking software solves the head direction in terms of
angular values of yaw (horizontal axis), pitch (vertical axis) and roll
(lateral tilt axis) for the rigid body as a whole, in an allocentric
reference frame.

The 2D head direction is estimated from the yaw angle values
alone, and the 3D head direction is estimated from yaw, pitch and roll
angles.

View as facing location
A ray is cast from the vector of 3D head direction and the intersection
of this ray with the walls of the maze is defined as the facing location.
Since the marmoset’s oculomotor range is largely <10°, we interpret
the facing location as view31.

Signal pre-processing and spike sorting
Offline spike sorting was performed using Plexon (Offline Sor-
ter version 4.5.0, Plexon Inc., TX, USA), a 4-pole, Butterworth, 250Hz
high pass, a digital filter was applied to the raw 30 kHz broadband
signal, and a −4 sigma noise threshold was used to detect and align
individual waveforms. Principal component analysis was used to
define the feature space and automatic (T-Distribution E-M) sorting
was applied to isolate units. Manual inspection was then performed
to classify units into noise units, multi-units or single-units
(Fig. S2c–e). Quality control measures were implemented after
sorting the spike data. Single units that fired <100 spikes per session
were invalidated. Additionally, to account for the use of microwire
arrays where the final location of individual wires cannot be con-
trolled, potential duplicate units were invalidated if the isolated units
sharedmore than 50% of the spike times (estimated at 1ms temporal
resolution). In cases where two or more units met this criterion, only
the unit with the highest signal-to-noise ratio was included in the
subsequent analyses.

Burst Index
Bursts can be described as a rapid sequence of action potentials fol-
lowed by a period of relative quiescence157,158, it has been estimated
that 95% of pyramidal cells in the macaque monkey CA3 fire in
bursts159,160. The burst index (BI) is a metric that has been proposed to
describe the propensity of burstiness in the firing pattern of neurons,
where higher BI values indicate a neuron’s higher propensity to fire in
bursts. As previously described60,161 we calculated the BI by estimating
both the inter-spike interval (ISI) histogram and the predicted ISI dis-
tribution, which is based on a Poisson distribution calculated from the
mean firing rate of the whole recording session.

The predicted Poisson distribution of ISI was computed as fol-
lows:

f tð Þ= λe�λt ð5Þ

where λ = firing rate and t = timebin. The probabilitywas calculated for
each 1ms time bin in the 2–40ms time range, a normalization proce-
dure was implemented by summing all of the predictions in both the
predicted and real ISIs.

The BI was computed as the following:

burst index =

P
ISIsmeasured �

P
ISIspredictedP

ISIsmeasured +
P

ISIspredicted
ð6Þ

where the sum of ISIs was performed between the values from 2 to
20ms. The BI is ultimately defined as the division between the sub-
traction of the measured ISI sum and the ISI predicted, and the sum of
both these sums. In the end, the index is bound between −1 and 1.

Classification of putative interneuron and pyramidal cells
Macaque monkey hippocampal neurons have been putatively classi-
fied as interneuron/pyramidal cells based on firing rate alone61,63,
where interneuron cells are typically of the fast-spiking type (average
firing rates above 10Hz). To increase the robustness of classification in
our analysis and avoid potential species-specific biases that firing rate
thresholding classification could introduce (since it hasonly beenused
inmacaquemonkeys), we implemented an unsupervised classification
algorithm (k-means, MATLAB function k-means) using BI and average
firing rate as features.We refrained fromusing other classicalmethods
of classification like spikewaveformwidth since it has been shown that
short-duration waveforms from neurons recorded from the hippo-
campus can represent axonal activity, and are not necessarily inhibi-
tory interneurons in nature62.

Spatial information content
Occupancy and firing rate maps were estimated based on a spatial bin
division shown in Fig. 4b, c, (place bins n = 84, view fields n = 106) per
recording session162. Bins that weren’t sampled more than 3 indepen-
dent times, or <200ms were discarded. SIC66,67 was calculated inde-
pendently for place and view for every individual cell. SIC was defined
as:

I =
XL

i
Pi

λi
�λ
log2

λi
�λ

ð7Þ

where L is the number of bins, Pi is the proportion of occupied time in
eachbin, λi is themeanfiring rate for the ith bin and �λ is themeanfiring
rate of that cell across all bins as defined by:

�λ=
XL

i
Piλi ð8Þ

Significant cells were defined as SIC>0.05 (corrected alpha value
for the number of bins) of the null distribution (5000 circular shift
permutations). In the same way, for significant cells, significant bins
(place or view fields) were defined as SIC> 0.05 (corrected alpha value
for the number of bins) of the null distribution for that bin.

Speed cell definition
A single cell was defined as a speed cell if it met two criteria:

Speed score higher than 0.3. The speed score is defined as the
Pearson’s correlation coefficient between the time series of speed and
the time series of firing rate58,74. After determining the instantaneous
speed (sampled at 60Hz), both the time series of speed (AHV and TS
were computed independently) and firing rate were smoothed using a
1-D Gaussian with 250ms standard deviation. The correlation coeffi-
cient was defined as the following (calculated using the MATLAB
function corrcoef):

r =
Pðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi � �x
� �2Pðyi � �yÞ2

q ð9Þ

where xi and yi are individual samples from the time series (e.g., x can
be speed and y firing rate) and �x and �y are the mean across all samples
(e.g., x can be mean speed and y mean firing rate). In order to allow
comparisons with prior work characterizing speed-correlated firing in
the hippocampus of rats58, we used their same definitions. In that
study, the threshold for categorizing a cell as a speed cell was a speed
score >0.3, as it effectively separated a small distribution of highly
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speed-correlated cellswithin thedistributionof thepopulation’s speed
scores, we observed a similar pattern in our dataset, where this
threshold segregated a similar subset of highly speed-correlated cells
for both AHV and TS (Fig. 5b).

Shuffle control criteria. Using the same smoothed firing rate time
series, a shuffle distribution of speed scores was computed after cir-
cularly shifting the time series 1000 times. This distribution served as
the null distribution used to estimate the significance of the real speed
score (real speed score higher than 95th percentile null distribution).

Since AHV and TS speed scores are estimated independently, cells
can be classified as AHV cells, TS cells or both.

Generalized additive model (pyGAM)
GAMs are a particularly useful tool to explore the relationship between
neural activity and multiple behavioral variables. They are specifically
advantageous when exploring complex and non-linear interactions
between the covariates and the independent factor163. Here we
describe the implementation used in every neuron reported in the
paper, we used this model to classify single cells according to their
encoding profiles; where a cell could significantly encode none, one or
a combination of behaviors (predictors).

The general form of GAMs is described by:

FðxÞ= y= expðβ0 + f 1ðx1Þ+ f 2ðx2Þ+ . . . + f rðxrÞÞ ð10Þ

In our implementation y is a single neuron’s firing rate, β0 is the
intercept (constant), [X1, X2, … Xr] are the predictor variables (space,
view, head direction and speed).

This GAM implementation has three components: distribution,
link function (F xð Þ= g μjXð Þ) and a functional form (fr).We calculated all
our models using a log link function, Poisson distribution and a func-
tional form function of penalized B splines164. The models are cross-
validated during training to avoid overfitting, and the goodness of fit
estimates are averaged across k-folds.

As reported in the results section, spatially selective cells are
mainly putative pyramidal cells and speed-encoding cells are mainly
putative interneurons (Fig. 5d), so in order to optimize computing
times, we designed two separate models, one for putative pyramidal
neurons (including space, view and head direction) and the other for
putative interneurons (AHV and TS).

We utilized a nested, stepwise, forward search model selection
approach to determine the optimal number of predictors per cell
(Fig. S5a). The methodology involved a gradual construction of the
model by iteratively incorporating predictor variables based on their
individual contributions to the overall goodness of fit. Initially, all
available one-variable models (first-order models) were fitted, and a
surrogate null distribution of first-order models was computed. This
null distribution was obtained by randomly circularly shifting the
vectorized firing rate a total of 100 times. To establish statistical sig-
nificance, we compared the actual explained deviance (ED) with the
95th percentile of the null distribution (Bonferroni corrected). ED is
described as the following ratio:

ED= 1� Dnull � Dfitted

Dnull

� �
ð11Þ

where Dfitted is defined as:

2
Xn

i= 1
yi log

yi
μ̂i

� �
� yi � μ̂i

� �� �
ð12Þ

where n is the number of observations, yi is the actual spike count for
the ith observation, and μ̂i the predicted mean spike count for the ith
observation.

Dnull is defined as:

Dnull = � 2ðLogLikelihoodsaturated � LogLikelihoodnullÞ ð13Þ

The log Likelihoodsaturated is defined as:

Xn

i = 1
yi log yi

� �� yi � logðyi!ÞÞ ð14Þ

and the Log Likelihoodnull is defined as:

Xn

i= 1
yi log ŷ

� �� ŷ� logðyi!ÞÞ ð15Þ

where ŷ corresponds to the mean firing rate (constant).
If the real ED exceeded this threshold, the model was considered

statistically significant.
The ED of the real model was then normalized by subtracting the

mean shuffle ED from the real ED, allowing us to select the first-order
model with the highest ED when multiple first-order models crossed
the significance threshold. The variable in the bestmodel was retained
as a predictor for the subsequent iteration of model selection (n + 1
order model). In each iteration, one of the remaining variables was
added at a time until all combinations of that order were evaluated.
Similar to the first-order models, statistical significance was assessed
by comparing it against a null shuffle distribution, which is calculated
at every iteration of the training process, via randomly shifting the
vectorized new added variable. For models with more than one vari-
able, the time series of the single predictor under consideration was
circularly shuffled, while the firing rate and already selected predictors
remained unaltered. The training process concluded when the incre-
mental improvement in model fit by adding more variables became
statistically negligible. At this point, the final combination of variables
was selected as the best model for a specific neuron.

The performance of thewinningmodel is evaluated by generating
a spike raster prediction using the best final nested GAM model
(Fig. S5b, c). These predictions are then compared to the actual neu-
ron’s rasters using stratified cross-validation with fivefolds. Since each
recording session (40–60min long) is divided into five equally timed
folds, each predicted raster is a continuous time series ~8–12min long.
To assess the similarity between the predictions and the real rasters,
the Pearson correlation coefficient is calculated between the predicted
and real raster data. Additionally, the coefficient of determination (R2)
is obtained for each fold, and the final R2 is computed by averaging
across all folds (Fig. S7a–c).

To determine the statistical significance of the model’s predictive
power, an F-test is performed on the calculated R2 values, using an α-
value of 0.05. This test allows us to ascertain if the model’s perfor-
mance is significantly better than what would be expected by chance.
Cells whose winner model’s performance is statistically significant are
considered to encode the variables used as predictors in that model.

Place decoding analyses
We used a linear multi-class SVM classifier (fitecoc, MATLAB function),
composed of “n“ number of classes of binary learners in a one-vs-one
design. The performance accuracy of eachmodel was evaluated using
fivefold cross-validation and trained ten times using distinct sub-
samples of all available trials. The subsampling procedure ensured the
proper balance of classes with varying trial numbers. The model’s
features were derived from firing rates of a pseudo-population of
neurons, obtained fromperiodswhere the AHVwas lower than 200°/s,
akin to head “fixations”, which in marmosets can be considered ana-
logous to eye fixations. The firing rates were integrated over 200ms
centered around those low AHV periods; each interval was treated as a
trial. We included neurons in the pseudo-population if they had sam-
ples from a spatial bin (see below) at least 50 times (trials) per
recording session.
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To decode place from this pseudo-population, we partitioned the
maze into two spatial bins per floor, resulting in a total of six spatial
bins. We identified the four spatial bins (the model’s classes) with the
highest visitation frequency and number of neurons that could be
incorporated into the pseudo-population (Fig. 7a, d).

We used a previously described ensemble construction
procedure81,82, this procedure iteratively finds the combination of
neurons that provides the best decoding performance from a pool of
pseudo-population of neurons (Fig. S7e). First, we train all the single-
neuron models and identify the model with the highest decoding
accuracy. We use this neuron as the “seed”, and we fit all possible
combinations of n + 1 ensembles including the seed and the remaining
neurons in the pool. We then select the sub-ensemble with the highest
decoding accuracy and continue fitting n + 1 models with the remain-
ing units.We repeat this procedureuntil the performance of themodel
becomes asymptotic and does not significantly improve by adding
more units; this final ensemble was referred to as the “all units best
ensemble”. To evaluate the contribution of the neurons that sig-
nificantly encode spatial variables, as per the GAM analysis, we repe-
ated the previous ensemble construction procedure while excluding
those neurons from the pool. We referred to this ensemble as the “no
significant units best ensemble”. Finally, we fit a Naka–Rushton func-
tion to both ensembles’ performance, to calculate statistics on the fit
coefficients and to aid with visualization. Raw ensemble performances
can be found in the Supplementary Information (Fig. S8a, b).

To validate the efficacy of the ensemble construction procedure
in identifying the “optimal” combination of neurons that maximized
the classifier’s performance, we fit a “random combination ensemble”,
where we randomly generated 100 different combinations of neurons
from the pseudo-population pool. Subsequently, we iteratively trained
the model using n + 1 neurons from the randomly generated
combination.

Signal pre-processing for local field potentials
Using the FieldTrip toolbox165 a 4-pole, Butterworth, 250Hz high pass
digital filter was applied to the raw 30 kHz broadband signal. The data
were then downsampled to 1 kHz. To eliminate low-frequency noise a
1 Hz high pass filter was applied and a high-frequency artifact rejection
algorithm was employed where the data were bandpass filtered
between 100 and 250Hz (9-order Butterworth filter and boxcar of 0.2)
and theHilbert envelope of the signal was calculated and subsequently
Z-scored. The artifact threshold was defined at 4 Z-score and a window
including 100ms before and after threshold crossing was rejected.

Time–frequency representation
To calculate the oscillatory power of the LFP and its time–frequency
representation, we used Morlet wavelets, implemented with the
FieldTrip toolbox. The wavelets consisted of 7 oscillations, with center
frequencies ranging from 1 to 30Hz (in even steps of 1 Hz), and a 25ms
smoothing time window. Baseline normalization was implemented to
account for 1/f activity using thedecibel conversionmethod, described
as follows:

dB= 10 log10
signal

baseline

� �
ð16Þ

where the baseline was estimated as the fractal component from the
power spectrum calculated using the Fitting Oscillations and One-
Over-F (FOOOF) algorithm166 (FieldTrip implementation).

LFP theta phase modulation
We used MATLAB’s butter function to design a 4th-order Butterworth
bandpass filter, to isolate the theta band LFP signal (MATLAB’s filtfilt
function, zero-phase filtering). Following bandpass filtering, the Hil-
bert transform was applied to compute the analytic signal, which was

then used to derive the instantaneous phase. We assessed significance
of theta phase clustering by conducting a Rayleigh test (Toolbox for
circular statistics with MATLAB167) around a 400ms window centered
around rapid head movement’s peak velocity. Critical values for Ray-
leigh’s Z were determined on a significance level of 0.01.

Neuronal modulation to head movements
Our classification of modulated units builds upon the framework
presented in the work of a previous study91. However, our approach
differs in that we introduce an additional category of modulation,
namely units that are both up and downmodulated.

Spike timestamps for a given single neuron are exported from
the Plexon software as binary spike trains with a 1ms time resolution.
We extracted spike train epochs (a window of 400ms) centered on
the peak velocity of headmovements and divided that window into 8
equally timed bins (50ms each). We calculated average spike rates
across all head movements for each bin. Next, we generated a shuf-
fled distribution of firing rates by circularly permutating spike times,
repeating this process 1000 times. Cells were classified as upmodu-
lated if the real average firing rate exceeded the 97.5th percentile of
the shuffle average firing rate at any bin and across bins (shuffle
distribution of maximum firing rates across the entire 400ms win-
dow). Cells were classified as downmodulated if the real average
firing rate was lower than the 2.5th percentile of the shuffle at any bin
and across bins (shuffle distribution of minimum firing rates across
the entire 400ms window). Cells were classified as down/upmodu-
lated if their real average firing rate both exceeded the 97.5th per-
centile and was lower than the 2.5th percentile of the shuffle at
different time bins.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper, and can be downloaded at
https://doi.org/10.6084/m9.figshare.25052960. The complete dataset
used in this study is available upon request to D.B.P. or J.C.M.T.

Code availability
The code used to analyze the data in this manuscript has been made
available on GitHub at https://github.com/DiegoPiza/3Dmarms168.
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