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Abstract

Objective. Decoding the intended trajectories from brain signals using a brain-computer interface
system could be used to improve the mobility of patients with disabilities. Approach. Neuronal
activity associated with spatial locations was examined while macaques performed a navigation
task within a virtual environment. Main results. Here, we provide proof of principle that multi-unit
spiking activity recorded from the lateral prefrontal cortex (LPFC) of non-human primates can be
used to predict the location of a subject in a virtual maze during a navigation task. The spatial
positions within the maze that require a choice or are associated with relevant task events can be
better predicted than the locations where no relevant events occur. Importantly, within a task
epoch of a single trial, multiple locations along the maze can be independently identified using a
support vector machine model. Significance. Considering that the LPFC of macaques and humans
share similar properties, our results suggest that this area could be a valuable implant location for

an intracortical brain-computer interface system used for spatial navigation in patients with

disabilities.

1. Introduction

Invasive brain-computer interface (iBCI) systems
have the potential to improve quality of life for phys-
ically disabled individuals. The real-time use of intra-
cortical activity can add communication channels
(Santhanam et al 2006, Pandarinath et al 2017) or
control assistive devices (Flint et al 2012, Ajiboye
et al 2017). One potential application of a brain-
computer interface (BCI) is to aid individuals with
limited mobility to navigate environments. As repor-
ted by Al-qaysi et al (2018), the current advance-
ment in technology allows intelligent wheelchairs to
be safely controlled by brain signals, making it one
of the important applications of BCI-based systems

© 2023 The Author(s). Published by IOP Publishing Ltd

that can help disabled individuals gain independence.
One issue that remains poorly investigated is the brain
areas that can provide reliable signals for spatial nav-
igation via a BCI.

The prefrontal cortex is known to coordin-
ate cognitive processes such as working memory
(Miller et al 2018) and learning abstract rules
(Wallis et al 2001, Buschman et al 2012). Stud-
ies have shown the impact of prefrontal cortex
lesions on the successful execution of spatial work-
ing memory functions (Curtis and D Esposito 2003)
and that the firing rate of the lateral prefrontal cor-
tex (LPFC) cells is modulated by spatial working
memory task demands (Jung et al 1998, Corrigan
et al 2021). More specifically, neurons in the LPFC
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have been found to encode remembered spatial loc-
ations during working-memory (Mendoza-Halliday
and Martinez-Trujillo 2017, Leavitt et al 2017b ) and
visuospatial attention (Tremblay et al 2015, Backen
et al 2018) tasks, as well as movement intentions
(Markowitz et al 2011, Boulay et al 2015, Johnston
et al 2021). Within the LPFC, neurons encode the
location of items in virtual environments (Roussy
et al 2021) when monkeys navigate toward visible
or invisible targets using a joystick. The use of such
desktop systems provides an efficient platform to ana-
lyze the neuronal activity underlying path-integration
(excluding proprioceptive information) during spa-
tial navigation tasks (May and Klatzky 2000, Gulli
et al 2020). The geometry and intersections of
a maze virtual environment, including boundaries
(Lee 2017) and landmarks (Jansen-Osmann 2002),
are key elements of spatial mapping and naviga-
tion behavior. Historically, motor execution tasks
allowed the research community to create primary
and supplementary motor cortex functional maps.
Further research demonstrated that motor imagery
and motor attempt can generate valuable brain activ-
ity for the discrimination of movement intention
(Chen et al 2021), particularly applicable to BCI sys-
tems. We can use a similar approach for spatial nav-
igation, by starting with the question of how spatial
locations can be decoded while navigating a virtual
maze using a joystick. The results can then guide us
to further test imagined or attempted navigation.

Here, we demonstrate that spatial locations and
task relevant events can be decoded from multichan-
nel LPFC activity of rhesus macaques navigating
through a virtual environment using a joystick. Using
support vector machine (SVM) learning, we found
that spatial location identification is more precise for
locations associated with task relevant information
such as maze intersections and directional change. We
also demonstrated that different maze locations for
the same task event could be differentiated (i.e. two
different starting locations). Since spatial location
probability depends on the prior position, we added
a Markov chain to the SVM model prediction and
found that it improves the decoder performance. We
also show the possibility to optimize the size of the
feature set by projecting the multi-unit spiking rate
on canonical vectors generated to maximize the dif-
ference between spatial locations on the maze. The
outcome of this study highlights the possibility of
using the prefrontal cortex as a source of information
related to task-relevant locations in a goal-selective
cognitive iBCI system.

2. Methods

2.1. Animals

Two male rhesus macaques (Macaca mulatta), aged
10 and 9 years old with respective weights of 12 kg
and 10 kg, were trained to navigate through a maze
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with a joystick to complete an associative memory
task (figure 1(a)). For this task, the primates were
trained to associate a context with a disk color. The
goal was to reach the correct colored disk depending
on the wall texture observed in the corridor of the
maze (figure 1(b)). If successful, the monkeys would
receive a juice reward.

2.2. Electrophysiological recordings

The brain activity from the LPFC was recorded using
two Utah microelectrode arrays (96 channels, elec-
trode length of 1.5 mm). They were both implanted
anterior to the arcuate sulcus, the first microelec-
trode array (MEAO) and second (MEAL1) being placed
lateral and medial to the principal sulcus respect-
ively (figure 1(c)). The neuronal signals were recorded
using a 128-channel Cerebus Neuronal Signal Pro-
cessor from Blackrock Microsystems. The Plexon off-
line sorter was used to isolate the single units from
the multi-unit stream. The local field potential (LFP)
signal was band-pass filtered (0.3 Hz to 7.5 kHz) and
digitized (16-bit with 1 pV per bit) at 30 kHz. Using
a fourth-order Butterworth anti-aliasing filter with a
250 Hz cut-off frequency, the signal was finally down
sampled to 1 kHz and re-reference to the common
average.

2.3. Experimental setup

The behavioral task took place in an X maze virtual
environment (Doucet et al 2016). During a session,
the rhesus macaques were seated in a custom-built
chair facing a computer monitor, the animals’ head
being fixed to allow eye position recordings which
were not used in our study. They would freely nav-
igate the maze using a two-axis joystick. The posi-
tion within the maze was recorded at a rate of 75 Hz,
matching the monitor refresh rate.

2.4. Behavioral task

The task required associating a context (wall tex-
ture options: wood or steel) with a correct destina-
tion (disk options: colorl or color2). A session would
include multiple blocks (3 or 4), each block had a dif-
ferent set of association (context-color) to be learned.
Note that the first and last blocks would use the same
association set. The animals would receive a juice
reward only if the correct association was made.

A trial starts once the monkey has completed
the previous trial (figure 1(d)), rotating its point of
view to face the center of the maze (‘post reward’
task epoch). The animal then navigates from the left
or right branch at one end of the X maze to the
branch junction (‘start of trial’ task epoch). The mon-
key continues through a long corridor in which the
side walls’ texture represents the trial context (‘con-
text showing’ task epoch). At the end of the cor-
ridor, the colored disks are visible (‘goal showing’
task epoch). The monkey then travels through the left
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Figure 1. Experiment description and intracortical implant locations details. (a) Virtual desktop environment allowed the
monkey to navigate through the maze using a joystick. Eye movements were tracked (Gulli et al 2020). (b) One trial of the
associative memory task would start at one end of the maze and move to the other end of the maze while the monkey learned to
associate the correct wall context texture in the corridor of the maze with the correct disk color to obtain a reward. The next trial
would start when the animal reached the disk and start its rotation back to face the maze center (Gulli et al 2020). (c) MEAs were
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showing trial locations considered.

chronically implanted anterior to the arcuate sulcus in the LPFC of NHP-B and NHP-T, MEAO and MEA1 located lateral and
medial to the principal sulcus (Roussy et al 2021). (d) Schematic of the maze showing trial epochs. (e) Schematic of the maze

or right end branch, depending on learned context-
color association (‘end of trial’ task epoch). The
next trial starts once the monkey reaches a colored
disk. The context and the disk-color branch loca-
tion were randomized independently for each trial.
Equally spaced maze locations along the North—South
axis were selected (figure 1(e)).

Neural activity associated with task events and
spatial locations is independent of the successful com-
pletion of the task. For this reason, we considered all
trials regardless of the successful association of the
context with a color. We only excluded incomplete
trials where the animals did not navigate through all
task locations. There was no time limit for a trial,
the macaques would typically traverse the maze at
the same speed, from the start to the end of each
trial. The incomplete trials would be caused by the
experimenter interrupting the experiment (i.e. when
sufficient trials had been captured). Learning and
unlearning activity was present during the trials but
not considered in the analysis of spatial locations
along the maze and the epochs of the task.

A session included the same navigational require-
ment but from trials belonging to different color-
context associative tasks. We processed one session
for each monkey. For non-human primate Buzz
(NHP-B), the session included three blocks run in the
following order: block1 (66 trials), block2 (288 trials),

and block3 (68 trials). For non-human primate Theo
(NHP-T), the session included four blocks sequen-
tially presented as follow: blockl (40 trials), block2
(97 trials), block3 (319 trials), and block4 (61 trials).
Note that blockl and block3 for NHP-B, as well as
blockl and block4 for NHP-T, used the same color-
context association.

2.5. Neural data analysis
MATLAB and RStudio were used for all data analysis.

2.5.1. First principal spectral component

As reported by Miller et al (2014), this signal rep-
resents the overall broadband frequency activity for
a window centered at a particular time. For each
1024 ms window of interest, a principal compon-
ent analysis was performed on the normalized power
spectrum of the LFP to obtain the eigenvectors and
eigenvalues. The first principal spectral component
refers to the original spectrum projected on the prin-
cipal eigenvector. For a more detailed description
refer to Miller et al (2009).

2.5.2. SVM classification

To identify the spatial locations and epochs from the
single and multi-unit spiking rate or from the first
principal spectral component of the LFP, we used
a SVM algorithm with a linear kernel (LIBLINEAR
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implementation for MATLAB (Fan et al 2008), with
options L2-regularized, L2-loss, and five-fold cross-
validation). We chose this algorithm as it is fast and
is less vulnerable to overfitting. To classify multiple
classes, this algorithm uses the one-vs-rest strategy.

2.5.3. Markov chain

The probability to be at a specific location in a maze
depends on the prior location. For that reason, we
added a stochastic model to our decoder. We designed
a simple Markov chain which assigned probabilities
for all possible locations given a prior location. Our
predicted location is then based on the multiplication
of the Markov chain probabilities with the SVM pre-
diction probabilities.

2.5.4. Canonical discriminant analysis

To reduce the size of the SVM feature set used
to decode the spatial locations, we generated eight
canonical vectors for each microelectrode array that
maximize the neuronal activity difference between
the nine locations. In RStudio, we first fitted a linear
model using the function ‘Im’ from the R Stats pack-
age (Wilkinson and Rogers 1973, Chambers 1992)
and then performed a canonical discriminant ana-
lysis (Ramsay and Silverman 1997) using the ‘can-
disc’ function from the R candisc package (Friendly
and Fox 2020) to create the canonical vectors. See
Johnston et al (2021) for further implementation
details.

2.6. Statistics

The statistical significance of SVM feature set dis-
tributions was evaluated using the MATLAB imple-
mentation of the Wilcoxon rank sum test (Wilcoxon
1945). Each entry in our distributions was the average
decoding accuracy of the five-fold SVM result, which
was repeated 100 times to create a full distribution
for this feature set. A null distribution was similarly
calculated using the average accuracy of the five-fold
SVM results after shuffling the classifier labels. Before
performing the Wilcoxon rank sum test between our
feature sets, the average of the null distribution was
subtracted from the decoding accuracy distribution.
The statistically significant threshold was reported
when the resulting p-value from the Wilcoxon test was
less than 0.01.

3. Results

3.1. Spatial locations within a virtual environment
can be decoded from the LPFC neural activity

To explore whether a subject’s position can be
decoded from neuronal activity in the LPFC we
trained two macaque monkeys to perform a nav-
igation task in a virtual environment and recorded
the responses of neurons in the LPFC using chronic-
ally implanted microelectrode arrays. A virtual maze
(X-maze) was originally created using a gaming
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engine (Gulli et al 2020, Corrigan et al 2021). A trial n
consists of a rhesus macaque navigating through the
maze using a joystick going from one of two branches
on one side at the start of the trial (SOT), to one of
two possible branches on the opposite side at the end
of the trial (EOT) (figure 1(a)). The maze had a cor-
ridor that connected the two sets of branches. The
animal had to learn the association between the wall
texture (wood or steel) presented when entering the
corridor (context epoch) and the colors of two disks
that appear when the animals reached the branch-
ing point (e.g. wood context means choose the red
disk and steel context means choose the green disk).
At the end of the trial, the monkey receives a juice
reward if the correct colored disk was reached. The
next trial (#n 4+ 1) would start once the monkey had
turned around in the maze (figure 1(b)).

The brain activity of each monkey was recorded
from two 10 x 10 microelectrode arrays (Maynard
et al 1997, Normann et al 1999) located in the LPFC
anterior to the knee of the arcuate sulcus. MEAO and
MEAL are the array designations lateral and medial to
the principal sulcus respectively (figure 1(c)). For the
session with NHP-B, the electrophysiological record-
ing from the first array (MEAO) provided valid signals
from 96 electrodes (97 single-units, 96 multi-units),
while the second array (MEA1) gave 95 channels
(132 single-units and 95 multi-units). For the session
with NHP-T, the electrophysiological recording from
MEAOQ provided valid signals from 91 electrodes (90
single-units and 91 multi-units), while MEA1 gave 96
channels (49 single-units and 96 multi-units).

For each trial, 5 task epochs (figure 1(d)) and
11 maze positions (figure 1(e)) were defined on the
North—South axis from where the animal started
his navigation to where the animal stopped moving
forward at the end of the trial. Note that the tri-
als for location 1 and 9 are split between the right
branch (locations 1a/9a) or left branch (locations
1b/9b) depending on the specific trial (figure 2(a)).

We first examined if spatial locations within the
maze could be decoded from the brain signals. We
looked at single unit spiking activity around each
maze location (1024 ms window) and found some
single units which had higher number of spikes
around specific locations. Figures 2(b) and (c) show
examples of a single unit tuned to location 8 and loc-
ation 9b respectively.

We then used five-fold cross-validation SVM
repeated 100 times to evaluate the average decoding
accuracy of 11 spatial locations from features based
on a 1024 ms window of single-units and multi-units
spiking rates as well as the first principal spectral
component of the LFP (Miller et al 2009) at those
places. In a real-time BCI application, avoiding spike
sorting is beneficial because it is time consuming.
We therefore compared the average decoding accur-
acy obtained with the different features on individual
blocks for both animals (figure 2(h)). The tested
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Figure 2. SVM decoding of locations from PFC neuronal activity. (a) Schematic of the maze showing the location points
considered in our decoding. (b), (¢) Single unit examples showing the number of spikes per 1024 ms window statistical
distribution centered at each location (NHP-B, 422 trials). (d), (e) Confusion matrices showing true and predicted classes of
decoding the locations using multi-unit spiking activity from 422 trials (all blocks) with NHP-B MEAO and MEA1 respectively.
The diagonal values represent the number of trials where the prediction was successful (darker blue shows higher percentage of
successful trials for each class). (f), (g) Confusion matrices showing location decoding from 517 trials (all blocks) with NHP-T
MEAQ and MEAL respectively. (h) Overall decoding accuracy of locations obtained using the first principal spectral component of
the LFP signal (black), single-unit (red) and multi-unit (blue) spiking activity from a 1024 ms window. White horizontal lines
show the respective shuffled result (p < 0.001 is represented by *).

feature sets on individual blocks for both arrays were  activity, while others are associated with activity that
all significantly higher than predicted by chance, how-  resembles other locations. Similarity of activity is
ever, the LFP-based decoder performed worse than often seen in the long corridor of the maze (locations
that of the spiking activity. For most blocks, single 4-6). Locations associated with the start of trial up
units provided better results than multi-units. Nev-  to entering the corridor (locations 1-3) and from the
ertheless, the remaining analysis and presented res-  goal showing to end of trial (locations 7-9) are bet-
ults will focus on multi-unit activity because of the ter decoded. Importantly, the initial starting branch
broader applicability for a future iBCI. during the SOT epoch (locations 1a/1b) and the end-

The confusion matrices in figure 2 show the ingbranch during EOT epoch (locations 9a/9b) could
results of the predicted versus true decoded classes be particularly well identified on NHP-B MEAI1 (start
of each location using data from all blocks for right: 78.8%, start left: 84.8%, end right: 99.2%, end
NHP-B on MEAO (figure 2(d)), MEA1 (figure 2(e)), left: 91.6%). These findings eliminate the possibil-
and for NHP-T on MEAO (figure 2(f)) and MEA1 ity that the locations were decoded from neuronal
(figure 2(g)). The results highlight the fact that activity linked with the time to reward or linked with
some locations are associated with unique neural the task epoch of the trials.
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Figure 3. SVM decoding of locations from individual and combined blocks, using single or both arrays. (a) Confusion matrix
showing true and predicted classes of decoding the 9 locations from 422 trials (all blocks) using both arrays on NHP-B. Right blue
column show decoded accuracy for each class. Overall decoding accuracy obtained was 70%. (b) Confusion matrix showing true
and predicted classes of decoding the 9 locations from 517 trials (all blocks) using both arrays on NHP-T. Right blue column show
decoded accuracy for each class. Overall decoding accuracy obtained was 59%. (c) Schematic of the maze showing the location
points considered for this analysis. (d), (e) Confusion matrices showing predicted and true location decoding accuracy from 422
trials (all blocks) on NHP-B MEAQ and MEAT1 respectively. (f), (g) Confusion matrices showing predicted and true location
decoding accuracy from 517 trials (all blocks) on NHP-T MEAO and MEAT1 respectively. (h) SVM decoding accuracy for
individual blocks using both arrays for NHP-B. The horizontal white lines show the accuracy when labels were shuffled.

(1), (j) SVM decoding for individual blocks on NHP-B MEAOQ and MEAL respectively. (k) SVM decoding accuracy for individual
blocks using both arrays for NHP-T. (1), (m) SVM decoding for individual blocks on NHP-T MEAO and MEA1 respectively.

For subsequent analyses, we balanced the data-
set by comparing the activity at 9 locations (instead
of 11) on the North-South axis, combining the ini-
tial and final left/right branches into single loca-
tions (figure 3(c)). The results of this analysis rein-
forced that location can be decoded well from the
neural activity. Using the data from all blocks and
both arrays, the decoding accuracies for positions 1,
7, 8, 9 (the starting point and the end of the cor-
ridor to the final point of the trial), are all above 81%
for NHP-B (the last three locations being decoded
accurately for 964 out of 966 trials) and above 75%
for NHP-T (figures 3(a) and (b)). To highlight the
impact of array placement on the decoding accur-
acy results, we looked at the predicted and true loca-
tion class from all blocks on primates NHP-B (MEAO:
figure 3(d), MEA1: figure 3(e)) and NHP-T (MEAO:
figure 3(f), MEAL: figure 3(g)). Different levels of
decoding accuracy were obtained with individual

arrays, but all arrays could best discriminate locations
1-7-8-9. The decoding accuracies of locations from
the combined blocks and arrays (figures 3(a) and
(b)) are mainly the combination of the best decoding
accuracies obtained from individual arrays.

We calculated the overall decoding accuracy by
(a) performing a five-fold cross-validation SVM ana-
lysis, (b) averaging the returned five-fold accuracies
and then (c) repeating this process 100 times to obtain
a distribution of results, reporting its mean as the
accuracy. The standard deviations of the obtained
accuracy distributions for all blocks were smaller
than 1.5%. The overall decoding accuracy using data
from individual and combined arrays are significantly
above the shuffled results for all individual blocks
(figures 3(h)—(m)). We evaluated the above chance
accuracy distributions by subtracting each entry with
the averaged shuffled accuracy. The Wilcoxon rank
sum showed that the difference between the above
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Figure 4. SVM decoding of epochs from individual and combined blocks, using single or both arrays. (a) Schematic of the maze
showing the task epochs onset considered for this analysis. (b) Confusion matrix showing true and predicted classes of decoding
the epochs from 422 trials (all blocks) using both arrays on NHP-B. Overall decoding accuracy obtained was 94.1%.

(c) Confusion matrix showing true and predicted classes of decoding the 5 task events from 517 trials (all blocks) using both
arrays on NHP-T. Overall decoding accuracy obtained was 88.6%. (d), (¢) Confusion matrices showing decoding of the task
events for combined blocks on NHP-B MEAO and NHP-B MEAT1 respectively. (f), (g) Confusion matrices showing decoding of
the task events for combined blocks on NHP-T MEAO and NHP-T MEA1 respectively. (h) SVM decoding accuracy (black) and
chance (horizontal white lines) for individual blocks using both arrays for NHP-B. (i), (j) SVM decoding for individual blocks on

NHP-B MEAO and MEAL1 respectively. (k) SVM decoding accuracy for individual blocks using both arrays for NHP-T.
(1), (m) SVM decoding for individual blocks on NHP-T MEAO and MEAL respectively.

chance accuracy distributions from individual array
compared to using both arrays were all statistically
significant (p < 0.01).

When analyzing individual arrays, we found that
data captured from MEA1 of NHP-B and MEAO of
NHP-T produced a slightly better overall perform-
ance compared to their counterparts in the same
monkey (figures 3(j)—(1)). This contrast between
primates can possibly be caused by the decoding
activity being differently located within the LPFC for
individual animals, or by higher levels of noise for dif-
ferent implants. These findings indicate that the spa-
tial information can be decoded from LPFC neural
activity.

3.2. Parallel identification of task epochs and maze

locations

Since the identification of the locations is particularly
strong in areas of the maze associated with import-
ant events linked to the successful completion of the
task, we decided to analyze the epoch neuronal activ-
ity at relevant task events (figure 4(a)). Following

the same process described for maze location decod-
ing analysis, we confirmed that the distributions of
epoch decoding accuracy compared to its chance level
were significantly different for individual and com-
bined arrays (p < 0.01). The standard deviations
of the obtained accuracy for all blocks were smaller
than 3.0%.

The five-fold cross-validation SVM lead to decod-
ing performances of the five epoch transitions at
accuracy higher than 94% for NHP-B (figure 4(b))
and 88% for NHP-T (figure 4(c)) when combin-
ing all blocks and data from both arrays. To high-
light the impact of array placement on the decod-
ing accuracy results, we also looked at the predicted
and true epoch class from all blocks on primates
NHP-B (MEAO: figure 4(d), MEA1: figure 4(e)) and
NHP-T (MEAQO: figure 4(f), MEAL: figure 4(g)). We
found that all task epochs could be well discriminated
except for the SOT which would often be confused
(23% for array MEAO on NHP-T) with the previous
task epoch (post-reward). Although the difference
between above chance distributions were statistically
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Figure 5. SVM decoding of locations and task epochs over time. Features used in the prediction are spiking rate (1024 ms
window) from all available multi-units captured from both MEAs. (a) Schematic of the considered epoch on the maze.

(b) Color-coded task epochs over time for an exemplar trial (trial7 of blockl on NHP-B). (c) Prediction of epoch over time for
same trial using trained SVM model. (d) Schematic of the considered location points on the maze. (e) Color-coded task locations
on the North—South axis of the maze for the same examined trial. (f) Prediction of the maze location over time using trained
SVM model. Mean of the decoding accuracy of each location over time, all trials (except training set) being aligned depending on

each location for (g) NHP-B and (h) NHP-T.

different, testing individual blocks with combined
data from both arrays showed a similar performance
between blocks on both animals (figures 4(h)—(k)).
However, we found some differences between arrays
(NHP-B: figures 4(i) and (j) and NHP-T: figures 4(1)
and (m)) which were in line with the results found
in our spatial response analysis, possibly caused by
higher level of noise on those implants.

To better understand the relationship between
activity associated with task events and activity asso-
ciated with spatial locations, we performed a single-
trial decoding analysis. To do this, we used a sub-
set of 200 trials from the block with the largest
trial set (block2 and block3 for NHP-B and NHP-T
respectively) to train two SVM models to decode the
task events and the spatial locations using multi-unit
activity from both MEAs. Figure 5(b) shows a typical
trial from blockl of NHP-B with its associated task
epochs shown on the maze (figure 5(a)). The saved

SVM model was used to predict the task epoch for
every 10 ms time point of the trial (figure 5(c)). The
vertical dashed lines represent the onset of the color-
coded task epoch. For this exemplar trial, all onsets
of the task events were successfully predicted with
the model. Unsurprisingly, in the examined trial, the
decision point (epoch #5) quickly becomes decoded
as the post reward (epoch #1) for the following trial.

We repeated this analysis for spatial locations.
Figures 5(d) and (e) show the maze position over
time on the North-South axis of the same exem-
plar trial. Each vertical dashed line represents one
of nine color-coded locations equally spaced on the
maze axis and is associated with a particular loc-
ation point on the maze (figure 5(e)). The classi-
fication result (figure 5(f)), evaluated every 10 ms,
shows some misclassifications for locations 4-5 but
accurate decoding of the other locations. This ana-
lysis demonstrates that within a specific epoch of a
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trial, it is still possible to decode multiple different
locations.

Using the model saved from the prior analysis,
we evaluated both primates’ average population per-
formance. We tested all trials (excluding the 200 tri-
als used to train the model) and compiled the decod-
ing accuracy around each location point individually.
The results highlight the strong decoding at locations
that are task-relevant with lower performance while
navigating through the long corridor (figure 5(g) for
NHP-B and figure 5(h) for NHP-T). The alignment
of all trials is based on the position belonging to the
exemplar trial. Note that neuronal activity at the first
position also caused an increase in predicting the last
position associated with the previous trial prior to
the maze direction change at the end of the branch.
Similarly, the last position of exemplar trial becomes
the first position of the next trial, which explains the
gradual increase in predicting the first location at the
last position.

3.3. Decoding performance improvement with a
Markov chain
Since navigation in this task is continuous, the
sequence of locations reached at any given time inter-
val is dependent on the probability of moving from
one location to the other. If spatial locations were
used to control an effector in a BCI system, there
would need to be a high level of prediction con-
fidence. We therefore modified the SVM decoder to
take advantage of knowledge of previous locations by
modifying it with Markov chain inputs. If the prior
position is known, the Markov chain probability of a
current location is multiplied by the predicted loca-
tion probability obtained from a trained SVM model.

In the maze task, the position could either be
the same or the next forward position since the goal
of the task is to move forward. However, in other
potential navigation scenarios, there could be the pos-
sibility of backward movement or missing the feed-
back signal of the prior position. We designed a chain
with the highest transition probabilities for moving
in the forward direction or staying at the same place,
and a low probability of moving backward or to the
further locations (figures 6(a)—(d)). We tested our
trials with and without applying the Markov chain
assuming our prior location was either the same
(figure 6(f)), the previous (figure 6(e)), or a future
location (figure 6(g)). Using features based on the
multi-unit activity on both arrays, we averaged the
previously saved model decoding accuracy for all tri-
als on individual blocks (excluding the training data).
The result of applying the Markov chain is an overall
and consistent improvement of our decoding per-
formance on both animals regardless of the prior loc-
ation being same, forward, or backward.

At the trial level, we repeated the previous ana-
lysis on the same example trial (figures 6(h) and
(1)), with the addition of the described Markov chain
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to the prediction path (figure 6(j)). The predic-
tion of locations followed a more regular navigation
path. Additionally, location #5, which was missed in
the previous non-stochastic decoder, was decoded
correctly.

3.4. Canonical space projection of the multi-unit
spiking activity

To better understand the number of channels
required to decode location, we performed a ‘greedy
channel analysis’ (Leavitt et al 2017b). To do this,
we first found the individual multi-unit signal which
provided the highest decoding accuracy. We saved
this first signal deemed our best unit. The decoding
accuracy was then evaluated for this unit combined
with each remaining unit to find and save what we
called our second-best unit. We repeated this pro-
cess for the third unit up to all units, maximizing the
decoding accuracy at each step. The mean accuracy
and the 95% confidence level obtained for all blocks
are presented for NHP-B (figures 7(a) and (b)) and
NHP-T (figures 7(c) and (d)). The results suggest
that the peak decoding (stars on figures 7(a)—(d))
is reachable with at most 28 and 34 multi-units for
NHP-B and NHP-T respectively (vertical dashed lines
figures 7(a)—(d)). In all cases, most of the decoding
accuracy is achieved with around ten units.

Having shown that each unit provides its own
contribution for decoding the locations and that only
a subset of the population is required to reach the
peak decoding accuracy, we investigated the possibil-
ity to improve processing requirement using canon-
ical space vectors. To identify nine locations, the
canonical discriminant analysis of each array gen-
erates eight vectors of size equal to the number of
multi-units. This canonical space analysis produces
weights that maximize the unit activity differences
for decoding all the considered spatial locations.
SVM features based on the spiking rate projected
on these vectors are then used to decode the loc-
ations more efficiently (factor reduction of 12 for
one array: #multi-units/#canonical vectors). Consist-
ent in both animals and arrays, the projection of the
multi-unit spiking activity on the top 2 canonical vec-
tors for 100 trials (figures 7(e)—(h)) demonstrates bet-
ter separation for locations 1, 7, 8, 9 in line with
our previous SVM decoding results. The trial group-
ing for locations on individual array seem to also
reflect the stronger decoding performance on MEA1
for NHP-B (figure 7(f)) and on MEAO for NHP-T
(figure 7(g)) mainly by improving the grouping and
showing some separation for location 6. Note that the
projection on the other vectors would improve the
location separation further but the top two vectors
provide approximately 79% of the cumulative vari-
ance explained (NHP-B MEAO: 79.7%, MEA1: 79.6%,
NHP-T MEAO: 79.1%, MEA1: 78.9%).

We compared the SVM accuracy performance
for decoding nine locations from features based on
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the multi-unit spiking rate against features from the
canonical space projections. For each feature set and
its shuffled counterpart, we first performed a five-
fold cross-validation SVM analysis and averaged the
returned five-fold accuracies. We then repeated this
process 100 times to obtain a distribution of res-
ults, reporting its mean as the accuracy. The loc-
ations were decoded using data from individual
blocks on each array. We also applied the decoder
to both arrays (figure 8, second column), individual
arrays with the blocks combined (figure 8, third

column), and combined arrays and blocks (figure 8,
fourth column). The statistical analysis distribution
of all pairs showed small but statistically signific-
ant differences between methods (p < 0.01). Over-
all, the canonical space projections were slightly less
reliable, possibly due to the change in the multi-
unit contribution between the trials used to train
the canonical vectors, and the tested trials. How-
ever, this method required a much smaller fea-
ture set, which could be advantageous for real-time
applications.
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4. Discussion

We examined the neuronal activity in non-human
primates’ LPFC while they freely navigate through a
virtual maze. While the LFP based signal and spiking
activity of the population showed selectivity for maze
locations, use of the latter provided better decoding
accuracy of different spatial positions along the maze.
We also demonstrated that decoding of spatial loca-
tions from neural activity improves using a Markov
chain model. We focus on multi-unit spiking rate as
this signal is well suited for the real-time demands of
an iBCI system.

4.1. Decoding of space in the primate brain

Previous studies have reported that decoding of spa-
tial positions is possible by reading out the spik-
ing activity of place cells in brain areas such as the
hippocampus of rodents during spatial navigation
tasks (O’Keefe and Dostrovsky 1971, Buzsdki and
Moser 2013, Spellman et al 2015). Studies of spatial
navigation in primates are scarcer, and the activity of

hippocampus cells has been associated with encod-
ing of gaze-position (Ekstrom et al 2003, Rolls and
Xiang 2006), while other studies have demonstrated
encoding of spatial location modulated by the con-
tingencies of the task (Rolls and Wirth 2018, Baraduc
et al 2019, Gulli et al 2020). Although the hippocam-
pus may seem, at first glance, an appropriate target
for a BCI that supports spatial navigation, its loca-
tion, deep in the temporal lobe, makes it less access-
ible to surgeries and chronic implants with many
electrodes.

Other studies have shown that it is possible to
build a BCI that utilizes neural activity recorded in
premotor areas of macaque monkeys to navigate a
cart through a physical environment (Rajangam et al
2016). The premotor cortex directly receives inform-
ation from the LPFC about the conceptual planning
of movements to locations (Nakayama et al 2008). In
principle, it is reasonable to assume the LPFC and the
premotor cortex, nearby and posterior to the arcuate
(Petrides 2005) work in tandem in the planning and
execution of commands for spatial navigation.

11
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Previous research has shown that task epochs and
target locations can be decoded from LPFC activ-
ity in macaques (Lennert and Martinez-Trujillo 2013,
Boulay et al 2015, Johnston et al 2021, Roussy et al
2021). Recently, Vogel et al (2022) demonstrated that
neurons in the mouse prefrontal cortex are required
for maintenance, encoding, and retrieval of inform-
ation in spatial working memory. They also repor-
ted that in their spatial working memory task, the

rodent’s spatial position in the physical maze had the
largest influence on the prefrontal cortex neuronal
activity.

The population decoding of locations during
virtual navigation was, to our knowledge, never
examined before. We demonstrated that 11 spa-
tial locations along the North-South axis of a vir-
tual maze could be decoded using five-fold cross-
validation SVM classifiers. Decoding was higher at
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locations where behavior associated with specific task
events and reward took place. The prefrontal cortex is
known to respond to reward expectation (Leon and
Shadlen 1999, Watanabe 2007). The successful decod-
ing of the starting and ending branch (left or right)
during the post reward and end of trial epochs of the
task eliminate the possibility that this selectivity was
associated with the trial time to reward.

The five epochs associated with the key task events
could also be identified from the same population. To
understand the dependencies of epoch related neur-
onal activity on locations we looked at the decoding
of their parallel identification in a single trial using a
saved SVM model. Our results showed that within the
same task event, multiple locations can be identified.

Most BCl implementations decode the movement
intentions from motor cortex neuronal activity to
control assistive devices (Collinger et al 2013, Shenoy
et al 2013). Recently, studies have demonstrated the
possibility to better guide iBCI effectors using dis-
crete movement intentions (Fan et al 2014), states
(Kao et al 2017, Sumsky et al 2017), transitions (Kang
et al 2015), and goals (Andersen et al 2019) decoded
from other cortical areas of the brain. In line with this
strategy, our results show that spatial locations within
a physical or virtual environment can be deciphered
from the LPFC intracortical activity, possibly to assist
in the control of intelligent wheelchairs. In addition,
knowing the region of interest within a tailored map,
could control a robotic apparatus, assistive device, or
even provide clues on what the user intends to do
depending on the content of the selected location.

In our study, the virtual environment did not
include landmarks other than the end goal colored
disk. This disk became visible once the end of the
maze corridor was reached and was located in one
of two possible branches depending on the trial con-
text. In such task scenario, we suspect the animal used
an egocentric reference frame where the coded spa-
tial positions in the maze were relative to the estim-
ated end goal or the maze intersection points. Future
research should add landmarks through the maze and
investigate the effect on the spatial locations decoding
accuracy in an allocentric reference frame.

4.2. Maximizing performance for iBCI systems

In real-time and critical application such as an iBCI,
the decoder accuracy must be reliable since the fail-
ures will significantly impact the user’s satisfaction
and its benefit. In navigation, reaching a future
position depends on the current location, and the
associated probability between them. Such processes
which retain no memory of past states are called
Markov processes (Norris 1998). Markov chains,
which are finite sets of state transition probabilities,
have been used to model cellular signal processing
(Said et al 2003), to forecast daily precipitation (Bojar
et al 2018), and to simulate sleep electroencephal-
ography patterns (Zung et al 1965). We evaluated
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the possibility to improve the decoding perform-
ance by modifying the locations’ probabilities pre-
dicted by the SVM with the transition probabilit-
ies embedded in the Markov chain. As expected,
with a designed Markov chain favoring the forward
navigation, we obtained valuable prediction accur-
acy improvements. Future work should look at how
the state transition probability matrix of the Markov
chain could be dynamically updated based on past tri-
als, to better represent the environment and naviga-
tional constraints.

4.3. Canonical discriminant analysis

To reduce processing requirement, we further invest-
igated how a canonical discriminant analysis could
optimize the contributions of multi-unit activity for
locations’ selectivity while reducing the overall size of
the feature set. The result for individual blocks and
arrays as well as combined blocks and arrays was that
the original multi-unit feature set performed better
than its projections in canonical space. However, for
individual blocks on combined arrays, the projected
multi-unit signal performed better overall. The fea-
ture set size was reduced by over 11-fold using the
canonical space which may be important in the design
of an iBCI system.

4.4. BCI application

In principle, we reasoned that as reported by Downey
etal (2016), combining information from both, a BCI
system and vision-guided autonomous robotics, can
improve the control of an assistive device used for
navigation or other purposes. One may ask, could
LPFC activity contribute to a BCI? The LPFC has been
classically associated with high level cognition, plan-
ning and executive function (Miller and Cohen 2001,
Fuster 2015). Neuronal ensembles in the LPFC, the
area we recorded from in this study, encode spatial
attention (Tremblay er al 2015, Backen et al 2018),
movement goals (Boulay et al 2015), and short-
term memory (Leavitt ef al 2017b) in spatiocentric
coordinates, rather than in retinal coordinates, as
many areas located more posteriorly in the brain
(Crawford et al 2003). Moreover, LPFC ensemble
codes reflect the biases in space processing observed
during behavior (Leavitt et al 2017a). Finally, LPFC
activity undergoes gain control within the area micro-
circuit, which calibrates neural activity for changes
in environmental variables such as stimulus intens-
ity (Bullock et al 2017, Duong et al 2019). Together
with its location at the top of the sensory processing
hierarchy (Felleman and Essen 1991), the findings
reported in LPFC electrophysiological studies in non-
human primates indicate that the computations per-
formed in this area are at the final stage of visual
and perceptual integration in primate brains such as
the ones of macaques and humans. If a BCI were
to incorporate aspects of cognition and executive
control, a combination of LPFC and motor cortex
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interfaces may achieve more functionality than either
of them alone (Andersen et al 2004, Pesaran et al 2006,
Andersen et al 2010).

One specific example of how LPFC activity can aid
a motor cortex BCI is to encode desired locations in
space-centered coordinates while navigating through
an environment (in our scenario the virtual maze),
and planning multiple sequential actions (e.g. visiting
different locations in a sequence). For a BCI to assist
in such tasks in the presence of eye movements and
possibly changes in body position, it would be ideal
to encode goals in space-centered frames, and it must
be robust enough to ignore the interference produced
by eye movements. LPFC ensembles encode goals in
a space-centered frame independently of eye and arm
movements (Roussy et al 2022). This intended target
location could provide valuable information and pos-
sibly improve the control of a navigation system (e.g.
a wheelchair) that does sequential actions (Andersen
et al 2019). Other possible candidates for contribut-
ing to cognitive BCIs that encode space-center goals
is the posterior parietal cortex (Andersen et al 1985).
This area has been the target of BCI studies (Andersen
et al 2004, 2019). Whether BCIs using a combination
of posterior parietal cortex, LPFC and motor cortex
activity could be more effective for real world tasks
than BCIs using one or two of these areas as targets
remains speculative. Additional studies must be con-
ducted to address these questions.

5. Conclusion

We examined the spiking and LFP activity recorded
from the LPFC of non-human primates while they
navigated through a virtual maze. We found that the
spatial locations within the maze could be decoded
using SVM on those features, particularly well at loc-
ations associated with events relevant to the success-
ful completion of the task. We investigated the effects
of adding a Markov chain to the SVM decoder and
concluded that it significantly improves the location
decoding accuracy. Assuming similar activity can be
extracted from humans and macaques LPFC during
navigation, our results suggest that a goal-based iBCI
implant in LPFC could provide useful spatial inform-
ation to support a navigation-based application for
patients with disabilities.
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