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Abstract:  
Hippocampal maps of space change across tasks. The mechanisms of this effect remain unclear. 
To examine this, we recorded activity of hippocampal neurons in monkeys navigating the same 
virtual maze during two different tasks: a foraging task requiring only cue guided navigation, and 
a memory task also requiring context-object association. Within each task, individual neurons 
had spatially-selective response fields, enabling a linear classifier to decode position in the 
virtual environment in each task. However, the population code did not generalize across tasks. 
This was due to sensory and mnemonic coding of non-spatial features and their associations by 
single neurons during each period of the associative memory task. Thus, sensory and mnemonic 
representations of non-spatial features shape maps of space in the primate hippocampus during 
virtual navigation. This may reflect a fundamental role of the hippocampus in compressing 
information from a variety of sources for efficient memory storage. 
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Introduction  

 The hippocampus is a phylogenetically ancient structure that receives highly processed 

input from all sensory modalities (Felleman and Van Essen, 1991; van den Heuvel and Sporns, 

2011). Processing of varied sensory inputs in the hippocampus serves two complex cognitive 

functions: memory and spatial navigation. Evidence for hippocampal involvement in both of 

these functions spans decades, though each is supported by largely disparate bodies of literature 

(Buzsáki and Moser, 2013; Eichenbaum and N. J. Cohen, 2014; Ekstrom and Ranganath, 2017; 

Schiller et al., 2015). 

 Neurophysiological evidence for hippocampal involvement in memory recall began with 

Penfield’s evocation of rich and vivid memories after direct electrical stimulation in epileptic 

patients in the 1930s. Stimulation of the medial temporal lobe, including but not limited to the 

hippocampus evoked “experiential hallucinations”, in which patients would recall remote 

episodes of their lives in rich detail: a “reactivation of a strip of the record of the stream of 

consciousness” (Penfield, 1958). These studies were complemented by contemporary 

observations that bilateral ablation of the hippocampus led to profound memory deficits (Milner 

and Penfield, 1955; Penfield and Milner, 1958; Scoville, 1954; Scoville and Milner, 1957). 

Immediately, efforts were made to define a non-human primate model that clearly replicated 

these deficits to understand the neurophysiology that was disrupted in patients. However, results 

were equivocal (Correll and Scoville, 1965a; 1965b; Orbach et al., 1960); only decades after the 

description of HM, analogous deficits in memory were observed in humans and non-human 

primates after ablation of the hippocampus, amygdala and rhinal cortex (Mishkin, 1978). At that 

time, it became clear that associative, relational, and/or contextual information relevant to 
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memory was encoded by the hippocampus, providing a parsimonious explanation of the memory 

deficits observed after hippocampal perturbation.  

 In the time between these behavioral findings, observation of single hippocampal neuron 

activity in rodents during a wide variety of behaviours became commonplace. This culminated in 

a succinct description of single neurons that fire action potentials when rodents occupied a 

particular region of a familiar environment (O'Keefe and Dostrovsky, 1971). Early studies 

showed place cells that fired in a direction- and behaviour-invariant manner, suggesting the 

hippocampus encodes a complete allocentric cognitive map of the environment for spatial 

navigation (O'Keefe and Nadel, 1978). The discovery of place cells ushered in a new era of 

hippocampal research on spatial responses of hippocampal neurons and ensembles (Moser et al., 

2017). An emergent consensus from this body of research is that spatial representations in the 

hippocampus can be modulated by a variety of environmental, cognitive, and behavioral factors 

(Fenton et al., 2010; Gothard et al., 2001; Markus et al., 1995). Relatively few studies have 

extended these observations to non-human primates, which typically report complex spatial 

response fields in hippocampal neurons that are modulated by direction, spatial view, 

motivational goals, and “action context” (Miller et al., 2013; Rolls and Xiang, 2006; Wirth et al., 

2017).  

 Extensions to the cognitive mapping theory suggest the hippocampus more generally 

builds maps of low-dimensional features along a continuous scale, including time, sound, and 

other abstract concepts (Aronov et al., 2017; Schiller et al., 2015). Recently, however, it has been 

inversely proposed that the role of the hippocampus in mapping these dimensions is related to its 

fundamental role in memory (Eichenbaum, 2017a; Hardcastle et al., 2017; Stachenfeld et al., 

2017). Direct comparisons of how continuous spatial maps are modulated by discrete sensory 
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and mnemonic representations in hippocampal neurons are scarce for several reasons. First, a 

large methodological gap exists between studies of mapping in rodents and discrete tests of 

memory performance in primates (Buzsáki and Moser, 2013; Eichenbaum and N. J. Cohen, 

2014; Ekstrom and Ranganath, 2017; Schiller et al., 2015). Second, diverse behavioural 

repertoires across species based on the structural organization of sensory systems and 

corresponding reorganization of sensory inputs to the hippocampus make cross-species 

comparisons of activity amongst hippocampal neurons complex (Preuss, 2000). 

To directly examine factors that may influence the stability and expression of cognitive 

spatial maps, we recorded single neuron activity from the hippocampi of two male non-human 

primates (Macaca mulatta). Electrode trajectories targeted the superior aspect of the right mid-

posterior hippocampus (predominantly CA3). Trajectories were planned and verified during 

electrode insertion using MRI-guided neuro-navigation (Figure 1A & B, Figure S1 & S2). 

Within each recording session, the monkeys completed three different tasks during simultaneous 

recording of eye movements and single-neuron activity from the hippocampus.  

Two tasks – the foraging task and the associative memory task – required free navigation in 

the same custom-built virtual reality environment (X-Maze) using a two axis joystick (Doucet et 

al., 2016) (Figure 1A & C). The spatial layout of the environment was unchanged across tasks.  

In the foraging task, animals navigated through the X-Maze towards a red volume to receive 

a juice reward. The red volume was randomly assigned to one of 84 locations in the maze, and 

randomly repositioned at a different location every time the subject reached it (Figure 1C, top; 

Movie S1; https://youtu.be/aWvheMzxMJo).  

In the associative memory task, monkeys learned a reversed two-context, three-object reward 

value hierarchy embedded into the X-Maze (Figure 1C, bottom; Figure S3; Movie S2; 
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https://youtu.be/RHx9Lw65oDw). Within a trial, context was cued by applying a wood or steel 

texture to the maze walls when the subject reached the central corridor (Figure S3 B & C, 

position a). When subjects reached the branched point opposite where they started (Figure S3 B 

& C, position b), one of the three possible colored discs appeared in each arm of the maze. The 

context and object pair on every trial was selected randomly. In every session, a new set of three 

colored discs was used with the same two contexts. Thus, a new conditional association between 

context and objects was learned daily. 

In each session, the VR tasks were bookended by a cued saccade task wherein monkeys were 

rewarded for making saccades to small white dots on a gray screen. This task was used to 

calibrate and validate accuracy of eye-on-screen position and examine whether hippocampal 

neurons exhibit screen position or saccade direction selectivity. 
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Figure 1. Tasks and recording locations 
(A) Monkeys were seated in front of a computer monitor and used a two-axis joystick to navigate 

through virtual reality X-Maze and complete two different tasks 
(B) Single-neuron recording locations from the right hippocampi (green reconstruction) of two 

monkeys. Arrows mark the recording locations of example neurons shown in subsequent 
figures 

(C) Overhead view of potentially rewarded locations and example trial trajectories in the X-Maze 
during the Foraging (top), and context-object Associative Memory task (bottom) 

Related to Figures S1, S2, and S3. 
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Results 

Single neuron firing rates are tuned for spatial position in both tasks 

To characterize place-selectivity in individual neurons, the virtual environment was spatially 

binned into an isometric two-dimensional pixel grid covering the entire maze. In each task, 

occupancy time and number of spikes observed were used to compute empirical per-pixel firing 

rates for each neuron. A wide variety of spatial distributions of spikes could be seen across 

neurons and across tasks (Figure 2A & B); changes in spatial distribution of activity were not 

due to changes in neuronal isolation (Figure S2). Across all neurons, firing rates were higher in 

the branching points and arms of the maze during the associative memory task than during the 

foraging task (Figure 2C).  

To determine which pixels’ empirical firing rates were higher than expected by chance, 

spatial position (pixel number) and neural activity were vectorized with 1ms resolution in each 

task. The neural activity vector was circularly shifted to change the spike location on each trial 

1000 times, creating a permutation-derived null distribution of firing rates for each pixel, each 

neuron, and each task. The number of neurons with firing rates that are statistically elevated 

(alpha=0.05/number of occupied pixels for that neuron; see Methods) in each pixel and in each 

task can be seen in Figure 3A. The X-Maze was then divided into 9 similarly-sized areas for 

further analyses (4 maze arm areas, 2 branch areas, 3 corridor areas). Spatial response fields for 

each neuron were defined as any of the 9 maze areas with statistically elevated firing in one or 

more pixels. 

 In the foraging task, 55.7% of neurons had spatial response fields in at least one maze 

area (102/183 neurons, median 1; Figure S4A, green bars). These were homogeneously 

distributed throughout the maze (p=0.91, χ2(8) = 3.29; Figure 3A, left column). In the associative 
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memory task, 70.0% of neurons also had spatial response fields. In contrast with the foraging 

task, these were not homogeneously distributed throughout the X-Maze (p<1⨉10-7, χ2(8) = 52.3; 

Figure 3A, right column). Of all neurons with spatial response fields in both tasks (49.7%; 

91/183), neurons were likely to gain fields in the arms and branching points of the maze during 

the associative memory task compared to the foraging task (Figure S4B).   

One possibility is that place-specific firing can be ascribed to selectivity for eye-on-screen 

position (Killian et al., 2012) coupled with biased gaze behavior within or across tasks. We 

compared saccade direction and gaze position selectivity in all three tasks for neurons with 

sufficient numbers of saccades and fixations in all tasks (n = 92 neurons; Methods). In the cued 

saccade task, foraging task, and associative memory task, 7.6%, 41.3%, and 42.4% of neurons 

were selective for saccade direction, respectively. In these three tasks 28.2%, 43.4%, and 72.8% 

of neurons were selective for gaze position. Critically though, no neurons were selective for the 

same saccade direction across tasks, and only 2 neurons (2.2%) were selective for at least one 

gaze position across all tasks. Thus, saccade direction and gaze position invariably affect only a 

small proportion of hippocampal neurons and cannot explain the dramatic changes in spatial 

selectivity across tasks. 
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Figure 2. Example neuron firing rates during the Foraging and Associative Memory task 
(A)  Example neuron R0910.Hc7.3. Top row shows data collected during the Foraging task; 

bottom row shows data collected during the Associative Memory task. Spatial map of total 
time spent in each map pixel (left/first column), trial-by-trial spike locations along the 
north-south dimension (second column), number of spikes in each pixel (third column), 
and per-pixel firing rate (right/fourth column) 

(B) Example neuron W0325.A1M0.2. Conventions are the same as in (A) 
(C) Average cross-task firing rate difference for all neurons 
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Single neuron spatial information content varies across tasks 

An additional measure of spatial encoding in individual neurons was used to quantify firing 

specificity in each task; spatial information content (SIC) quantifies how many bits of 

information about the location of the subject are transmitted per action potential (Markus et al., 

1994; Ravassard et al., 2013; Skaggs et al., 1993). Empirical and circularly shuffled control SIC 

values were computed using occupancy vectors and firing rate vectors, much the same as 

previously described (see Methods). Figure 3B shows the number of neurons with SIC values 

that exceed the statistical threshold for significance compared to the null distribution of each 

pixel (alpha=0.05/number of occupied pixels).  

In the foraging task, 27.3% of neurons had significant SIC summed over the entire spatial 

map. The location of pixels with significant SIC were homogeneously distributed throughout the 

maze (p=0.59, χ2(8) = 6.56; Figure 3B, left column). In the associative memory task, 67.2% of 

neurons showed significant SIC. The location of pixels with significant SIC were not 

homogeneously distributed throughout the maze (p=0.0004, χ2(8) = 28.5; Figure 3B, right 

column), and the proportion of neurons with significant SIC during the associative memory task 

exceeded that observed in the foraging task for all maze areas (McNemar’s test for equal 

proportions; p-value range 0.005 - 1´10-7). Though more neurons exhibited significant SIC in the 

associative memory task than the foraging task, the distribution of empirical SIC values was not 

different between tasks (Figure 3C and Figure S5; two-sample Kolmogorov Smirnoff test, 

p=0.66). 	  
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Figure 3. Firing rate and Spatial Information 
Content in both tasks 

(A)  Spatial histogram showing the number of 
neurons with statistically elevated firing 
rate in each pixel in both tasks (top). The 
summarized histogram (bottom) shows 
the number of neurons with at least one 
significant pixel in each maze area. 
*significantly different proportion across 
tasks; McNemar’s	test	of	equal	
proportions, p<0.05, Bonferroni-
corrected 

(B) Histograms showing the number of 
neurons with statistically elevated spatial 
information content. Conventions are the 
same as in (A) 

(C) Histogram of significant spatial 
information content values in each task. 
Only neurons with empirical spatial 
information values above the 95th 
percentile of circularly shifted 
permutation test values are included. 
Inset: Cumulative distribution of spatial 
information content in each task 

Related to Figures S4 and S5. 
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Spatial position can be decoded from population activity 

The previous results show that individual neurons contain information about space in each 

task, but statistical descriptions of selectivity in single neurons may not be sufficient in capturing 

the wealth of information encoded by neural populations (Fusi et al., 2016; Rigotti et al., 2013). 

The stability of a holistic population code for space and the optimal spatial reference frame 

cannot be assessed in single neurons. Therefore, we used the firing rates from the entire 

population of neurons to decode subject position in the maze within and across tasks, and using 

allocentric and direction-dependent spatial reference frames (Figure 4A). 

We used a multi-class support vector machine with a linear kernel to decode the subject’s 

position in space using neuronal firing rates (Fan et al., 2008; Methods). Briefly, an ensemble 

was constructed using firing rates from each neuron in 10 passes through each maze area for 

each task; neurons with less than 10 trials in any condition were excluded (n=152 neurons 

included). Decoding accuracy was tested using cross-validation. The ensemble was stratified into 

5 folds, with 4 of these used for parameter normalization and model training, and the remaining 

fold used for model testing. A null distribution of decoding accuracies was derived by permuting 

the labels of the testing fold. This procedure was repeated 100 times, yielding distributions of 

empirical (Figure 4B, colored distributions) and null (Figure 4B, grey distributions) decoding 

accuracy. Statistical differences between accuracy distributions were assessed via Wilcoxon 

ranksum.  

The classifier predicted position in the maze above chance levels in both tasks when using an 

allocentric spatial reference frame (Figure 4B, first and second column; foraging: 1.50±0.45 

times permuted control (mean±SD); p<10-12; associative memory: 2.22±0.53 times permuted 

control; p<10-31). However, accuracy was poor (foraging task Cohen’s κ=0.06; associative 
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memory task Cohen’s κ=0.15; Methods). The classifier systematically confounded structurally 

similar areas of the maze in both tasks, as evidenced by the X-shaped distribution of predictions 

in the allocentric decoder confusion matrices (Figure 4C). 

Decoding position using an idiothetic, direction-dependent reference frame, prediction 

accuracy was 1.71±0.39 (p=0.09 compared to allocentric; Figure 4B; third column). In the 

associative memory task, decoding accuracy improved to 3.01±0.48 (p<10-10 compared to 

allocentric; Figure 4B, fourth column). These results indicate that populations of hippocampal 

neurons encode spatial position more reliably in a direction-dependent idiothetic reference frame, 

consistent with previous findings across species (Acharya et al., 2016).  
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Figure 4. Hippocampal ensemble prediction of spatial position with a linear classifier  
(A) Spatial reference frames used in each of the lower panels of spatial classification analyses 
(B) Distributions of classification accuracies for spatial position in the foraging (green) and 

associative memory (blue) tasks as well as cross-task testing and validation (orange). 
*p<0.05 real vs. shuffled distribution (grey distributions), Wilcoxon ranksum.  
Red bars and numbers, mean; purple bars, median 

(C) Confusion matrices for each classification analysis. Real location=rows; predicted 
location=columns; colormap, prediction likelihood 
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Cross-task comparison of population models of spatial position 

Though subjects’ position in space could be decoded from the population of neurons in each 

task, it is not clear whether coding of space generalized across tasks; that is, whether an abstract 

representation exists, invariant to the task that the animal is engaged in (Saez et al., 2015). To 

determine whether the cognitive map of space generalized across tasks, we trained a linear 

support vector machine using trials from the foraging task and tested using trials from the 

associative memory task. Classification accuracy fell near chance (Figure 4, orange, rightmost 

column; 1.28±0.25 times permuted control accuracy; p<10-11; κ=0.08). Results were unchanged 

when the training and testing sets were swapped. This indicates that coding of spatial position by 

the ensemble of recorded neurons does not generalize across tasks and suggests that the spatial 

information carried by the population of recorded neurons changes across tasks.  

The poor abstraction of spatial representation across tasks could be due to a global change 

across the entire X-Maze, or differences in parts of the maze where behavioral demands differed 

across tasks (branches and arms). At these points, object- and context-driven comparison and 

selection of targets is required only in the associative memory task. On the other hand, cue 

guided navigation through the central corridor was a common requirement across tasks. By 

examining the confusion matrix for the cross-task decoding analyses, it is clear that cross-task 

predictions were most accurate in the corridor of the maze (Figure 4C, farthest right). 	  
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Individual neurons encode sensory and mnemonic features of the associative memory task 

The previous results show where in the X-Maze the population code for space changes, but 

not which parameters of the task are being encoded in each area. Changes in the population 

model across tasks may be due to neurons encoding features of the associative memory task 

(context, object color, and their conjunction) at the locations in the maze where they become task 

relevant. To examine this encoding, we regressed firing rate for each neuron against the trial-

varying parameters of the associative memory task in each period. This was done using the 

context and object of a given trial and the firing rate in each period of the same trial (sensory 

encoding; Figure 5, left plots), or the firing rate in each period of the next trial (memory 

encoding; Figure 5, right plots).  

The example neuron shown in Figure 2B fired most in the arms of the maze. Plotted as a 

function of trial period in the associative memory task, this neuron fires immediately after the 

reward was delivered; post-reward firing was not observed in the foraging task (Figure S7). This 

example neuron was selective for previous trial features during the post-reward period (Figure 

5A); firing rate was highest following trials where the lowest value object was chosen, and no 

reward was delivered (p<10-4, Kruskal Wallis). This encoding cannot be explained by sensory 

features such as object color, context or reward size alone; but only by the conjunction of these 

features, even though none of these features were visible during the post-reward period.  

The example neuron shown in Figure 2A fired exclusively between the subject’s initial turn 

towards the chosen object and the moment of first contact (goal approach period; Figure S7). 

This neuron was most active during approaches to a single object color regardless of context, and 

did not fire when approaching an intermediate value object (Figure 5B; p<10-20, Kruskal Wallis).  
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On a population level, a diverse array of selectivity for associative memory trial features was 

observed. The chosen object color was most robustly encoded during the object approach 

(46/183 neurons, 25.14%; Figure 5C, left, yellow dots). The conjunction of object and context of 

the previous trial was encoded by the same number of neurons during the post-reward period 

(Figure 5C, right, yellow dots with blue outline). Encoding of trial context peaked in the 

corridor of the maze (sensory: 16/183 neurons, 8.7%, memory: 18/183 neurons, 9.8%; Figure 

5C, blue dots). 

These results show non-spatial sensory and mnemonic encoding changes across trial periods 

of the associative memory task. It is not known whether these functions are supported by a 

common or separate population of hippocampal neurons. To compare sensory and memory 

encoding of each neuron for each trial parameter, we correlated F-statistics from each neuron’s 

encoding model during goal approach (sensory) and post-reward (memory) periods (Figure 6). 

Similar proportions of neurons showed prospective and retrospective coding of contexts (Figure 

6A, left, p=0.68, McNemar’s test of equal proportions) or objects (Figure 6A, middle, p=0.12, 

McNemar’s test of equal proportions). However, for the combination of object and context, the 

proportion of neurons showing memory coding was significantly larger than sensory coding 

(Figure 6, left, p=0.0005, McNemar’s test of proportions). The strength of sensory versus 

memory coding in individual neurons was not correlated for trial context (Figure 6B, Spearman 

rho 95% confidence interval = -0.12–0.25); in contrast, sensory and memory coding for objects 

and combinations of contexts and objects were correlated (Figure 6B objects: Spearman rho 

95% confidence interval = 0.13–0.48; context´object: 0.05–0.40).	  
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Figure 5. Non-spatial feature selectivity in the associative memory task. 
Selectivity of each neuron for non-spatial features of the associative memory task. Selectivity 
is computed using trial parameters of trial n and firing rates from the same trial (sensory; left 
plots), or trial n+1 (memory; right plots).  
(A) Example neuron W0325.A1M0.2. an object-value selective neuron. Letters denote 

categories with significantly different firing rates within that condition (p<0.05, 
Bonferroni adjusted) 

(B) Example neuron R0910.Hc7.3, an object-color selective neuron. Conventions are the same 
as in (A) 

(C) Proportion of single neurons selective for non-spatial associative memory task features: 
context (blue dot), chosen object color (yellow dot), and the combination of these two 
(yellow dot, blue outline) 

Related to Figure S6. 
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Figure 6. Sensory versus Memory encoding of trial features 
(A) Sensory versus memory encoding model: fit parameter F-statistic comparison. Inset: 

percentage of neurons with significant fit parameters for each encoding model 
(B) Spearman correlation coefficient of encoding model F-statistics for each neuron 

between the foraging and associative memory task. Circle, median; shaded bars, 99% 
confidence interval 
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Associative memory trial type is encoded by the population 

 Finally, we used a linear classifier to determine the accuracy with which the population of 

hippocampal neurons can predict the context and object pair of a given trial (associative memory 

trial type). One classifier was trained to predict context and object of the current trial from three 

sensory trial periods (context appearance, object appearance, and object approach; Figure 7, 

Sensory); another was trained using two memory trial periods (post-reward and pre-context; 

Figure 7, Memory). In both classifiers, each neuron’s firing rate in each trial period was used as 

an independent predictor. We used a logistic classifier with elastic net regularization to avoid 

problems of overfitting associated with having many predictors and a limited number of model 

training examples (Friedman et al., 2010).  

 Using only the sensory or memory trial periods, prediction accuracy was above chance  

(sensory: 2.88±1.13 times permuted control; p<10-86, Wilcoxon ranksum, Cohen’s κ=0.24; 

memory: 2.04±0.95; p<10-58 times permuted control, Wilcoxon rank-sum, Cohen’s κ=0.12). 

Using the firing rates from both the sensory and memory trial periods in a single classifier, 

classification accuracy further increased (3.29±1.12 times permuted control; p<10-97, Wilcoxon 

ranksum; Cohen’s κ=0.31).	  
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Figure 7. Trial type decoding in the associative memory task 
(A) Distribution of classification accuracies from decoding analysis of trial type (trial 

context and object pair) in the associative memory task.  
*p<0.05 real vs. shuffled distribution (grey distributions), Wilcoxon ranksum.  
Red bars, mean; purple bars, median 

(B) Confusion matrix derived from the classification analysis. Predicted trial type=rows; 
real trial type=columns; colormap, prediction likelihood 
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Discussion 

 In the current study, we recorded the activity of individual hippocampal neurons while 

monkeys performed a navigation task and an associative memory task in the same freely 

navigable maze. During both tasks, hippocampal neurons encoded spatial information, though 

single-neuron and population coding of space changed across tasks. Critically, observed changes 

to spatial coding across tasks were attributed to selectivity for trial-varying features of the 

associative memory task visible in the environment (sensory representation), and when they were 

no longer visible (mnemonic representation). These results extend previous observations of 

hippocampal encoding, showing that dynamic encoding of space can be attributed to sensory and 

mnemonic representation of perceptually and cognitively defined features.  

Spatial remapping in hippocampal neurons 

 Changes in single neuron and population coding for space in the current study may be 

interpreted as place cell remapping, as seen in studies of rodent hippocampal activity in real 

(Muller and Kubie, 1987) or virtual environments (Acharya et al., 2016). Several types of 

remapping have been defined: global, partial, local, and rate (Knierim and McNaughton, 2001; 

Moser et al., 2017).  Global remapping occurs when all neurons with place-specific firing 

rearrange their preferred firing location. Partial remapping occurs when some, but not all 

recorded place cells change their preferred firing location in response to a global change in the 

environment. Local remapping occurs when some, but not all recorded neurons change their 

preferred firing location in response to a localized change in the environment (e.g. addition, 

removal, or movement of an object or barrier). In contrast, rate remapping occurs when a 

neuron’s preferred firing location is preserved, albeit at a significantly different rate (Leutgeb et 

al., 2005). The specific environmental or cognitive factors, and related thresholds that lead to 

each type of remapping are unclear (Moser et al., 2017).  
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 In the current study, neither global nor rate remapping sufficiently captures the nature of 

cross-task changes in spatial and non-spatial encoding. Similarity in cross-task models for space 

in the central corridor of the maze, as illustrated in the cross-task confusion matrix in Figure 4C, 

suggests that not all neurons with place-specific activity change their contribution to spatial 

decoding across tasks. Since firing rates were scaled within tasks for these analyses, rate 

remapping could not explain reduced prediction accuracy in cross-task spatial decoding analyses. 

The localized change in cross-task models of space in the arms and branches of the maze are 

most akin to local remapping. Beyond this, we show that elevated firing of single neurons is 

attributed to sensory and mnemonic selectivity for specific features of objects at these locations 

in the associative memory task. The high proportion of neurons with sensory and mnemonic 

selectivity for non-spatial trial-varying features of the associative memory task suggest that it is 

the encoding of these features – rather than remapped selectivity for space per se – that explains 

changes in spatial representation across tasks. The nuances in spatial and non-spatial mnemonic 

encoding we have reported here have not been previously observed in the primate hippocampus.   

Non-spatial encoding in hippocampal neurons 

 A growing body of literature suggests that hippocampal maps are not limited to 

representations of the physical environment; subsets of hippocampal neurons have been shown to 

“map” continuous scalar quantities other than physical space. In one study, rats ran on a 

treadmill to receive a reward (Kraus et al., 2013). Importantly, while running, the rat’s position 

was mostly stable. Rats were trained to run for a predictable amount of time (varied speed and 

distance), or predictable distance (varied speed and time). In this paradigm, a number of neurons 

that fired selectively for a specific time interval were found, while distance varied and physical 

location was fixed (Kraus et al., 2013). In another study, rodents were trained to hold a lever to 
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play a tone that continuously increased in frequency, with the goal of releasing the lever within a 

learned frequency range (Aronov et al., 2017). Here, sound represented a non-spatial scalar 

quantity that could be continuously mapped. Indeed, hippocampal neurons showed tonal 

selectivity for all frequencies used in the experiment, and only when the tone had a predictable 

relationship with reward. Whether a neuron also showed a physical place specificity was not 

correlated with its tonal specificity (Aronov et al., 2017). These studies illustrate hippocampal 

ensemble-level encoding of non-spatial continuous sensory dimensions of an experience in 

rodents. 

Clear evidence for pure spatial selectivity in navigating primates (analogous to that 

commonly observed in rodents) is scarce; studies that aim to disambiguate purely spatial coding 

from possible confounding factors describe primate hippocampal place cells as view-dependent, 

task-related, or otherwise complex (Ekstrom et al., 2003; Georges-François et al., 1999; Ono et 

al., 1993; Wirth et al., 2017). In previous work, the specific factors that modulate spatial activity 

in hippocampal neurons could not be disambiguated or contrasted with adaptive feature 

selectivity as shown in the current study; the use of single tasks with fixed object- or subject-

positions makes it difficult to precisely ascribe this neuronal selectivity.  

 Most recently, primate hippocampal neurons have been ascribed gaze-informed, task-

situated place selectivity (Wirth et al., 2017). However, interpretations of “action context” in this 

work rely on active versus passive movement through a restricted environment, rather than free 

navigation and environmental exploration in a common environment during varied cognitive 

tasks in the same space. In the current study, differential encoding of space across cognitive tasks 

can be attributed to specific selectivity for viewed and remembered objects that guide behaviour. 

These results extend the concept of mixed selectivity for cognitive variables seen in the primate 
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prefrontal cortex neurons (Rigotti et al., 2013) to hippocampal representations of remembered 

features. Furthermore, single neurons with retrospective selectivity show that encoding of non-

spatial features is not necessarily linked to incoming sensory inputs, but to memories of these 

features. These multidimensional memory fields provide a single flexible neural substrate for two 

main functions of the hippocampus: spatial navigation and associative memory.  

Reconciling spatial and non-spatial theories of hippocampal function 

 The hippocampus is believed to play an important role in navigation primarily because of 

the observation of place cells which encode the spatial position of the animal. These studies are 

typically performed in contrived, geometrical environments with experimenters monitoring few 

behavioral variables, such as the animal’s position or head direction. Hence, it is natural to focus 

on navigation and ignore the more general role of the hippocampus in encoding new structured 

memories. However, it is known that the hippocampus is not needed to navigate in familiar 

environments (see e.g. Clark, 2018; Redish, 1999), suggesting that it is important primarily in 

situations of navigation that require the formation of new memories. Recent theoretical works 

propose, similarly to what has been suggested by Eichenbaum (2017b), that the hippocampus is a 

memory system, which uses the statistics of the recent history to compress a stream of highly 

correlated sensory experiences. Sensory compression can be achieved using a simple network 

trained as a sparse auto-encoder (Gluck and Myers, 1993; Olshausen and Field, 1997). Recently, 

this type of network was used to compress sensory experiences of a simulated agent exploring a 

new environment, and was shown to naturally produce the spatial response properties of typical 

hippocampal neurons (Benna and Fusi, 2018). The compressed sensory representations improve 

the efficiency of information storage for memory, produce representations that can be highly 
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biased towards relevant portions of the environment, and explain the elevated variability of the 

neuronal responses.  

 Other recent models of the hippocampus focus on the encoding of temporal sequences 

and assume that the hippocampus tries to compress memories by storing only the information 

that is relevant for predicting the next state of the environment (Hardcastle et al., 2017; Schiller 

et al., 2015; Stachenfeld et al., 2017) at the expense of the specific role it plays in navigation. 

These predictions are then used to drive reinforcement learning (Mattar and Daw, 2018; 

Stachenfeld et al., 2017). All these models are compatible with our observations and provide a 

general theoretical framework to understand the role of the hippocampus as a memory device, 

with spatial response fields that are modulated by cognitive factors and recent sensory 

experience. 

Conclusions 

 Instead of framing the hippocampus as the brain’s Global Positional System, the spatial, 

sensory, and mnemonic encoding observed in our study better reflect the processes inherent in 

Tulving’s General Abstract Processing System (Tulving, 1985). In such a system, adaptive 

representations provide the basis for learning and storing behaviorally relevant information 

across behaviorally relevant dimensions in a context-dependent manner.  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

References 

Acharya, L., Aghajan, Z.M., Vuong, C., Moore, J.J., Mehta, M.R., 2016. Causal Influence of 
Visual Cues on Hippocampal Directional Selectivity. Cell 164, 197–207. 
doi:10.1016/j.cell.2015.12.015 

Aronov, D., Nevers, R., Tank, D.W., 2017. Mapping of a non-spatial dimension by the 
hippocampal-entorhinal circuit. Nature 543, 719–722. doi:10.1038/nature21692 

Benna, M.K., Fusi, S., 2018. Memory compression in the hippocampus leads to the emergence of 
place cells. In preparation. 

Buzsáki, G., Moser, E.I., 2013. Memory, navigation and theta rhythm in the hippocampal-
entorhinal system. Nat. Neurosci. 16, 130–138. doi:10.1038/nn.3304 

Clark, R.E., 2018. Current Topics Regarding the Function of the Medial Temporal Lobe Memory 
System. Curr Top Behav Neurosci 10, 455–30. doi:10.1007/7854_2017_36 

Correll, R.E., Scoville, W.B., 1965a. Effects of medial temporal lesions on visual discrimination 
performance. J Comp Physiol Psychol 60, 175–181. 

Correll, R.E., Scoville, W.B., 1965b. Performance on delayed match following lesions of medial 
temporal lobe structures. J Comp Physiol Psychol 60, 360–367. 

Doucet, G., Gulli, R.A., Martinez-Trujillo, J.C., 2016. Cross-species 3D virtual reality toolbox 
for visual and cognitive experiments. J. Neurosci. Methods 266, 84–93. 
doi:10.1016/j.jneumeth.2016.03.009 

Eichenbaum, H., 2017a. The role of the hippocampus in navigation is memory. J. Neurophysiol. 
117, jn.00005.2017–1796. doi:10.1152/jn.00005.2017 

Eichenbaum, H., 2017b. Barlow versus Hebb: When is it time to abandon the notion of feature 
detectors and adopt the cell assembly as the unit of cognition? Neurosci. Lett. 
doi:10.1016/j.neulet.2017.04.006 

Eichenbaum, H., Cohen, N.J., 2014. Can We Reconcile the Declarative Memory and Spatial 
Navigation Views on Hippocampal Function? Neuron 83, 764–770. 
doi:10.1016/j.neuron.2014.07.032 

Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., Fried, I., 
2003. Cellular networks underlying human spatial navigation. Nature 425, 184–188. 
doi:10.1038/nature01964 

Ekstrom, A.D., Ranganath, C., 2017. Space, time, and episodic memory: The hippocampus is all 
over the cognitive map. Hippocampus 27, 9769. doi:10.1002/hipo.22750 

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J., 2008. LIBLINEAR: A Library 
for Large Linear Classification. The Journal of Machine Learning Research 9, 1871–1874. 

Felleman, D.J., Van Essen, D.C., 1991. Distributed hierarchical processing in the primate 
cerebral cortex. Cereb. Cortex 1, 1–47. doi:10.1093/cercor/1.1.1 

Fenton, A.A., Lytton, W.W., Barry, J.M., Lenck-Santini, P.-P., Zinyuk, L.E., Kubík, S., Bures, 
J., Poucet, B., Muller, R.U., Olypher, A.V., 2010. Attention-like modulation of hippocampus 
place cell discharge. J. Neurosci. 30, 4613–4625. doi:10.1523/JNEUROSCI.5576-09.2010 

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization Paths for Generalized Linear 
Models via Coordinate Descent. J Stat Softw 33, 1–22. doi:10.1109/TPAMI.2005.127 

Fusi, S., Miller, E.K., Rigotti, M., 2016. Why neurons mix: high dimensionality for higher 
cognition. Current Opinion in Neurobiology 37, 66–74. doi:10.1016/j.conb.2016.01.010 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

Georges-François, P., Rolls, E.T., Robertson, R.G., 1999. Spatial view cells in the primate 
hippocampus: allocentric view not head direction or eye position or place. Cereb. Cortex 9, 
197–212. 

Gluck, M.A., Myers, C.E., 1993. Hippocampal mediation of stimulus representation: a 
computational theory. Hippocampus 3, 491–516. doi:10.1002/hipo.450030410 

Gothard, K.M., Hoffman, K.L., Battaglia, F.P., McNaughton, B.L., 2001. Dentate gyrus and ca1 
ensemble activity during spatial reference frame shifts in the presence and absence of visual 
input. J. Neurosci. 21, 7284–7292. 

Hardcastle, K., Ganguli, S., Giocomo, L.M., 2017. Cell types for our sense of location: where we 
are and where we are going. Nat. Neurosci. 20, 1474–1482. doi:10.1038/nn.4654 

Killian, N.J., Jutras, M.J., Buffalo, E.A., 2012. A map of visual space in the primate entorhinal 
cortex. Nature 491, 761–764. doi:10.1038/nature11587 

Knierim, J.J., McNaughton, B.L., 2001. Hippocampal place-cell firing during movement in 
three-dimensional space. J. Neurophysiol. 85, 105–116. doi:10.1152/jn.2001.85.1.105 

Kraus, B.J., Robinson, R.J., White, J.A., Eichenbaum, H., Hasselmo, M.E., 2013. Hippocampal 
“time cells”: time versus path integration. Neuron 78, 1090–1101. 
doi:10.1016/j.neuron.2013.04.015 

Leutgeb, S., Leutgeb, J.K., Barnes, C.A., Moser, E.I., McNaughton, B.L., Moser, M.-B., 2005. 
Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. 
Science 309, 619–623. doi:10.1126/science.1114037 

Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L., Skaggs, W.E., 1994. Spatial 
information content and reliability of hippocampal CA1 neurons: effects of visual input. 
Hippocampus 4, 410–421. doi:10.1002/hipo.450040404 

Markus, E.J., Qin, Y.L., Leonard, B., Skaggs, W.E., McNaughton, B.L., Barnes, C.A., 1995. 
Interactions between location and task affect the spatial and directional firing of 
hippocampal neurons. J. Neurosci. 15, 7079–7094. 

Mattar, M.G., Daw, N.D., 2018. Prioritized memory access explains planning and hippocampal 
replay. bioRxiv 225664. doi:10.1101/225664 

Miller, J.F., Neufang, M., Solway, A., Brandt, A., Trippel, M., Mader, I., Hefft, S., Merkow, M., 
Polyn, S.M., Jacobs, J., Kahana, M.J., Schulze-Bonhage, A., 2013. Neural activity in human 
hippocampal formation reveals the spatial context of retrieved memories. Science 342, 
1111–1114. doi:10.1126/science.1244056 

Milner, B., Penfield, W., 1955. The effect of hippocampal lesions on recent memory. Trans Am 
Neurol Assoc 42–48. 

Mishkin, M., 1978. Memory in monkeys severely impaired by combined but not by separate 
removal of amygdala and hippocampus. Nature 273, 297–298. doi:10.1038/273297a0 

Moser, E.I., Moser, M.-B., McNaughton, B.L., 2017. Spatial representation in the hippocampal 
formation: a history. Nat. Neurosci. 20, 1448–1464. doi:10.1038/nn.4653 

Muller, R.U., Kubie, J.L., 1987. The effects of changes in the environment on the spatial firing 
of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968. 

O'Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from 
unit activity in the freely-moving rat. Brain Res. 34, 171–175. 

O'Keefe, J., Nadel, L., 1978. The hippocampus as a cognitive map. Oxford University Press, 
USA. 

Olshausen, B.A., Field, D.J., 1997. Sparse coding with an overcomplete basis set: a strategy 
employed by V1? Vision Res. 37, 3311–3325. 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

Ono, T., Nakamura, K., Nishijo, H., Eifuku, S., 1993. Monkey hippocampal neurons related to 
spatial and nonspatial functions. J. Neurophysiol. 70, 1516–1529. 

Orbach, J., Milner, B., Rasmussen, T., 1960. Learning and retention in monkeys after amygdala-
hippocampus resection. Arch. Neurol. 3, 230–251. 

Penfield, W., 1958. The Rôle of the Temporal Cortex in Recall of Past Experience and 
Interpretation of the Present, in: Wolstenholme, G.E.W., O'Conner, C.M. (Eds.), Ciba 
Foundation Symposium on the Neurological Basis of Behaviour, Ciba/Neurological. John 
Wiley & Sons, Ltd., Chichester, UK, pp. 149–174. doi:10.1002/9780470719091.ch9 

Penfield, W., Milner, B., 1958. Memory deficit produced by bilateral lesions in the hippocampal 
zone. AMA Arch Neurol Psychiatry 79, 475–497. 

Preuss, T.M., 2000. Taking the measure of diversity: comparative alternatives to the model-
animal paradigm in cortical neuroscience. Brain Behav. Evol. 55, 287–299. 

Ravassard, P., Kees, A., Willers, B., Ho, D., Aharoni, D., Cushman, J., Aghajan, Z.M., Mehta, 
M.R., 2013. Multisensory control of hippocampal spatiotemporal selectivity. Science 340, 
1342–1346. doi:10.1126/science.1232655 

Redish, A.D., 1999. Beyond the Cognitive Map. MIT Press. 
Rigotti, M., Barak, O., Warden, M.R., Wang, X.-J., Daw, N.D., Miller, E.K., Fusi, S., 2013. The 

importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590. 
doi:10.1038/nature12160 

Rolls, E.T., Xiang, J.Z., 2006. Spatial view cells in the primate hippocampus and memory recall. 
17, 175–200. 

Saez, A., Rigotti, M., Ostojic, S., Fusi, S., Salzman, C.D., 2015. Abstract Context 
Representations in Primate Amygdala and Prefrontal Cortex. Neuron 87, 869–881. 
doi:10.1016/j.neuron.2015.07.024 

Schiller, D., Eichenbaum, H., Buffalo, E.A., Davachi, L., Foster, D.J., Leutgeb, S., Ranganath, 
C., 2015. Memory and Space: Towards an Understanding of the Cognitive Map. J. Neurosci. 
35, 13904–13911. doi:10.1523/JNEUROSCI.2618-15.2015 

Scoville, W.B., 1954. The limbic lobe in man. J. Neurosurg. 11, 64–66. 
doi:10.3171/jns.1954.11.1.0064 

Scoville, W.B., Milner, B., 1957. Loss of recent memory after bilateral hippocampal lesions. J. 
Neurol. Neurosurg. Psychiatr. 20, 11–21. 

Skaggs, W.E., McNaughton, B.L., Gothard, K.M., Markus, E.J., 1993. An information-theoretic 
approach to deciphering the hippocampal code, in:. Presented at the Advances in neural 
information processing systems, pp. 1030–1037. 

Stachenfeld, K.L., Botvinick, M.M., Gershman, S.J., 2017. The hippocampus as a predictive 
map. Nat. Neurosci. 7, 1951. doi:10.1038/nn.4650 

Tulving, E., 1985. Elements of Episodic Memory. OUP Oxford. 
van den Heuvel, M.P., Sporns, O., 2011. Rich-club organization of the human connectome. J. 

Neurosci. 31, 15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011 
Wirth, S., Baraduc, P., Planté, A., Pinède, S., Duhamel, J.-R., 2017. Gaze-informed, task-situated 

representation of space in primate hippocampus during virtual navigation. PLoS Biol. 15, 
e2001045. doi:10.1371/journal.pbio.2001045 

 
 
Acknowledgements: We thank Jesse Jackson, Matthew Leavitt, Ramon Noguiera for critical 
editing, input and discussion, and all members of the JMT lab for support. We thank Blandine 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

Bally, Kevin Barker, Jackson Blonde, Sara Chisling, Steve Frey, Steve Nuara, and Walter 
Kucharski for technical assistance. RAG was supported by an NSERC PGS-D and a McGill 
David G. Guthrie Fellowship. This work was supported by CIHR and NSERC grants to JMT. 
   
 
Author Contributions: All authors edited the manuscript. RAG designed experiments, virtual 

environments, collected and analyzed data, and wrote the manuscript. LD contributed to 
data analysis. BWC contributed to data collection and data analysis. GD contributed to 
virtual environments design and data analysis. SW contributed to experimental design. SF 
contributed to data analysis and manuscript writing. JMT contributed to experimental 
design and manuscript writing. 

 

	  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

Methods 
 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 

Two male monkeys (Macaca mulatta; 7 years old, 7 kg; 14 years old, 12 kg) participated in 
all experiments. These monkeys were trained to perform three behavioral tasks, and given juice 
reward for their efforts in each task (400-1000+ mL daily). Monkeys also received food rewards 
as positive reinforcement at the beginning and end of each session. Behavioral patterns and body 
weights were closely monitored to ensure stable health conditions throughout the experiment. All 
animal procedures complied with the Canadian Council of Animal Care guidelines and were 
approved by the McGill University Animal Care Committee. 
 

METHOD DETAILS 
 
Electrophysiological Recordings  

The entire protocol for planning surgical procedures, recording from the hippocampus and 
verifying electrode locations is schematized in Figure S1.  

Prior to any surgical procedures, a naïve 500um isotropic T1-weighted 3T MRI was taken 
for each animal (Figure S1, step 1). Using these scans, head post placement and chamber 
trajectory were planned using an MRI-guided neuro-navigation suite (Brainsight, Rogue 
Research, Montreal, QC) (Figure S1, step 2). Chambers were positioned over prefrontal cortex, 
such that electrode trajectories were perpendicular to the long and transverse axis of the right 
middle-to-posterior hippocampus. Following surgical implantation of the head post and 
recording chamber, a CT scan was acquired with cannulas passing through the chamber grid at 
cardinal locations (Figure S1, step 3). The resultant CT and MRI were co-registered, so 
electrode trajectories and terminal recording locations could be specifically mapped to chamber 
grid holes (Figure S1, step 4).  

All data was collected over the course of 37 recording sessions. In each session, 
hippocampal activity was recorded using up to four single high-impedance tungsten electrodes 
(0.4-1.5 MOhms) simultaneously. Prior to every recording session, electrode trajectories were 
mapped to the MRI, and expected distances to grey and white matter were measured (Figure S1, 
step 5). These expected waypoints were compared against changes in neural activity while the 
electrode was lowered to the terminal recording site (speed 0.01mm/s; Figure S1, step 6). 
Distances to putative CA3 recording sites were adjusted online as necessary. 

Neurons from the hippocampus were isolated while subjects sat quietly in the dark 
recording room, since hippocampal neurons typically exhibit elevated firing rates in this state 
compared to foraging or other exploratory behaviours. Local field potentials were monitored for 
bouts of theta-like activity and changing low frequency power profile as a function of arousal. 
Multi-unit activity was monitored for sparse activity and burstiness characteristic of hippocampal 
pyramidal neurons. Hippocampal activity was recorded at 30,000 Hz using a multi-channel 
recording system (128 channel Cerebus Data Acquisition System, Blackrock Microsystems, 
Utah, USA) for sorting and offline analysis. Cluster-cutting to isolate neurons from multi-unit 
clusters was done using Plexon software (Offline Sorter, Plexon Inc., Texas, USA). Cluster 
cutting was done agnostic to time; however, neurons with continuously morphing principle 
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components and/or a complete loss of activity as a function of time were excluded from analyses. 
Any neurons with task-invariant reward-related activity were excluded from analyses.  

In one monkey, post-recording verification of electrode trajectories was possible. This was 
done using a 350um isotropic susceptibility-weighted 7T MRI (Figure S1, step 7, cool color 
map). This scan was co-registered to the naïve 3T anatomical MRI, and shows a high degree of 
concordance between the expected and actual trajectories and terminal recording locations. 

 
Behavioral Tasks 

After electrode positions were fine-tuned to optimize neuronal signal-to-noise ratios, 
monkeys typically sat quietly in the darkened room for 20 minutes, allowing sufficient time for 
electrodes to settle. After this, monkeys proceeded to complete three behavioral tasks: a cued 
saccade task, a virtual associative memory task, and a virtual foraging task. At the end of each 
session, the cued saccade task was repeated, and monkeys again sat quietly in the dark for an 
additional 10-20 minutes of recording.  

In the cued saccade task, monkeys were trained simply to fixate on a 1° visual angle (dva) 
white dot that could appear at any of 9 locations on the monitor in a 24 dva by 18 dva grid.   

The remaining two tasks were incorporated into a virtual environment custom-built using a 
video game engine (Unreal Engine, Epic Games, Inc., Rockville, MD) and parameters of the 
behavioural tasks could be monitored and controlled in real-time via Matlab (Mathworks, Inc., 
Natick MA) (Doucet et al., 2016). Monkeys were trained to freely navigate about this 
environment using a two-axis joystick. 

In the virtual foraging task, subjects were visually cued to navigate towards an easily 
identifiable target (red fog) that was consistently rewarded. The target could appear at any of 84 
locations in the environment (Figure 1C, Foraging task, 84 dotted locations for display purposes 
only). Target locations in the X-Maze were independent across trials.  

In the associative memory task, monkeys navigated the X-Maze to learn a context-
dependent reward value hierarchy. Reward value associations were dependent on environmental 
cues (textures applied to maze walls; Context 1 and Context 2) and three differentially rewarded 
colored discs (objects A, B and C). Object reward values were context-dependent; that is, in 
Context 1, object A > B > C, and in Context 2, object C > B > A (Figure 1C, Figure S3A). 
Object colors were pseudo-randomly selected from a seven-color set at the beginning of each 
session to prevent repetition of colors across neighboring sessions. Thus, a new context-object 
hierarchy was learned every day.  

On a single trial, subjects start at either the North or South end of the X-Maze. They then 
navigated through a long central corridor towards the opposite end of the maze. One of two 
possible textures (wood or steel) was applied to some walls of the maze when the monkey 
reached the corridor (Figure S3B and C, position a). When subjects reach the end of the 
corridor, they reach a forked decision point, with each of the two arms containing one of the 
three possible colored objects (Figure S3B and C, position b).  

On individual trials, the context was independently randomized, as was the object color 
combination. Object colors were randomly assigned to either the left or right arm of the maze, 
and the same two colors could not appear in each arm of the maze on a single trial. 

Quantities of juice reward given for successful completion were fixed between the cued 
saccade task, foraging task, and middle reward value of the associative memory task.  
 
Experimental Set-Up  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

During training and experimental sessions, the monkeys were seated in a custom-built chair 
in front of a computer monitor. The chair was fit with a two-axis joystick (part 212S15S8383; 
PQ Controls, Inc., Bristol, CT), which the monkeys used to navigate freely through the virtual 
environment. Player position within the virtual environment was updated and recorded at 75 Hz, 
matching the monitor refresh rate. While seated, the head position of the monkey was fixed, to 
facilitate eye position and intra-hippocampal recordings. Eye position on the screen – and thus 
gaze within the virtual environment – was monitored at 500 Hz via video-based eye tracking 
(EyeLink 1000, SR Research, Ontario, Canada). 
 
Eye movement classification 

We use a custom toolbox to parse eye signal collected via video oculography into saccades, 
fixations, smooth pursuits and post-saccadic oscillations (Corrigan et al., 2017). Briefly, the 
initial identification of putative saccades is done by: 1) iteratively calculating a saccade 
acceleration threshold; 2) grouping threshold crossings within 40ms into a putative saccade; and 
3) ignoring putative saccades group shorter than 10ms. The remaining segments of eye signal 
were further classified by foveation type.  

For all putative saccadic periods, the maximum velocity was calculated, and then the onset 
and offset precisely identified by comparing the main direction and inter-sample changes in 
direction. Saccade boundaries were defined when the signal was either above a high threshold 
(60°) for one sample, or above a low threshold for three consecutive samples (20°). This method 
differentiates between eye movement types, since saccade direction is very consistent, whereas 
camera noise leads to higher inter-sample variance during smooth pursuits and fixations. Once 
saccades were identified, the direction and amplitude were calculated based on the onset and 
offset points for all saccades during the visually-guided task, including inter-trial-intervals, and 
for all completed trials in both virtual navigation tasks. These saccades were used for analyses of 
saccade direction selectivity. Saccade offset locations were used to analyze gaze position 
selectivity on the screen. 
   

QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Saccade Direction Selectivity 

To examine saccade direction selectivity, we binned directions in eight 45° bins, starting 
with a center on 0°. A bin was only analyzed if there were at least 7 saccades in it, and a 
neuron’s saccade direction selectivity was only analyzed with a minimum of 5 saccade direction 
bins. Firing rate was calculated for the 150ms prior to saccade onset to get the average spike rate 
for each direction.  

Significant direction selectivity for each neuron was assessed using a permutation test. 
Firing rates and directions were randomly shuffled 1000 times, generating 1000 null distributions 
for each saccade direction for each neuron. A neuron was categorized as being selective for a 
direction if it had a spike rate that was in the top 5th percentile of the null distribution after 
Bonferroni correction (alpha = 0.05/number of direction bins). 
 
Gaze Position Selectivity  

Each on-screen foveation was categorized within one of nine 12°⨉8° screen areas. For each 
foveation within each screen location, a neuron’s firing rate was calculated in the 200ms after 
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saccade offset. Also for a location to be included, there needed to be at least 7 saccades per 
location. Foveation location selectivity was tested in each task for all neurons, with enough 
Foveations in at least 6 screen locations in each task.  Like saccade direction selectivity, gaze 
position selectivity of each neuron was assessed using a permutation-derived null distribution.  
 
Place Selectivity 

To determine whether each neuron fired more action potentials than expected by chance in 
any area of the X-Maze in each task, we used a statistical permutation test based on spatial 
position and spike rasters for each neuron (Figure 2, Figure 3, and Figure S4). First, the X-
Maze was parsed into a 32⨉12 grid of pixels. For each trial, a vector of player positions 
(occupied pixel number) was created at 1ms resolution. For each recorded neuron, a 
corresponding binary vector was produced with 1ms resolution, denoting the presence or absence 
of an action potential. By collapsing across trials, the occupied time and number of recorded 
action potentials was computed. To determine if this number was significantly above chance for 
each pixel, the vector of occupied pixels was circularly shifted for each trial, and the firing rate 
in each pixel was re-computed. This circular shuffling procedure was done 1000 times. Any 
pixel with an empirical firing rate exceeding percentile 1-alpha was statistically significant, 
where alpha=0.05/total number of occupied bins. Pixels with a total occupancy of less than 
200ms were excluded. Place fields were defined as any of the 9 architecturally distinct maze 
areas (4 arms, 2 branches, 3 corridor sections; see Figure 3 and Figure 4A, allocentric reference 
frame) with at least one statistically elevated spatial bin. 

The specificity of each neuron’s spatial response map was quantified using spatial 
information content (Ravassard et al., 2013; Skaggs et al., 1993) (Figure 3B and C, Figure S6). 
Each neuron’s information content (I; in bits) is defined as 

𝐼 = 7𝑃9
𝜆9
𝜆̅
	log=

𝜆9
𝜆̅

>

9

 

where the proportion of occupied time in each pixel (Pi) is defined as 
𝑃9 = 	

𝑜9
∑ 𝑜A>
A

 

and the average firing rate per pixel 𝜆	B  is 

𝜆	B = 	7𝑃9𝜆9
>

9

 

Spatial information content was computed for each neuron for each pixel occupied for more 
than 200ms. A null distribution of spatial information contents (and corresponding null spatial 
information maps) was computed for each neuron by circularly shifting the vector of occupied 
pixel numbers 1000 times prior to computing the spike rate maps for that neuron. Neurons with 
summed spatial information content exceeding the 95th percentile of the null distribution were 
deemed statistically significant, and these are included in the spatial histogram (Figure 3B), 
spatial information content histograms (Figure 3C, Figure S6) and cumulative distribution 
(Figure 3C, inset). Particular pixels with spatial information content exceeding that of their 95th 
percentile (Bonferroni-corrected for the number of occupied bins) were deemed statistically 
elevated, and displayed in the spatial histogram in Figure 3B. 

 
Spatial Classification Analyses  
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We used a linear classifier (Fan et al., 2008) to determine whether the population of all 
recorded neurons could reliably encode position in the maze (Figure 4).  The same procedures 
were used for all spatial classification analyses, starting with firing rates for all neurons in all 
trials and respective conditions (i.e. “trials” could refer to passes through each spatial bin or 
individual trial periods in the associative memory task). All neurons that did not have at least 10 
trials in all conditions were excluded from our analyses (n=152 included). To begin, we 
randomly subsampled 10 trials from each condition for each neuron, creating an ensemble 
subsample. For subsequent classification, we used a linear kernel support vector machine, cross-
validated with stratified k-folds. Specifically, we split the ensemble subsample into five stratified 
groups of trials (five folds), with four folds constituting the training set, and one fold reserved for 
testing. At this point, the firing rate of each neuron in all k-folds were z-scored using the mean 
and standard deviation of the training set only for that neuron (not the testing set). A linear kernel 
model was fit to the ensemble subsample using L1-regularized L2-loss support vector 
classification. An important benefit of using L1 regularization is automatic parameter selection 
on the model inputs; whereas L2 regularization yields parameter weights very close to zero, L1 
regularization instead shunts weights directly to zero. This results in a trained model that is both 
sparse and more interpretable. The trained model was subsequently tested on the reserved testing 
fold to assess prediction accuracy. The procedure for normalization, model training and testing 
was repeated five times total, so each k-fold of the ensemble subsample was used as the testing 
set once. The entire procedure — starting from the 10-trial ensemble subsampling — was 
repeated 100 times, yielding a total of 500 iterations of the SVM testing procedure.  

A permutation procedure was used to determine chance prediction accuracy in all cases. 
This proceeded similarly to the training and testing procedures described above. However, after 
creating the ensemble subsample and prior to splitting the ensemble subsample into stratified k-
folds, the condition labels were randomly permuted, and classification analyses then proceeded 
exactly as previously described. This procedure was repeated 20 times for each ensemble 
subsample, yielding a total of 10,000 individual iterations of the SVM testing procedure.  

It is important to note that each neuron’s firing rate was z-scored in the training set only and 
within each task independently prior to classification. This negates the possibility of spurious 
similarity of cross-task classification models attributed to within-neuron similarity in baseline 
firing rates across tasks, independent of area-specific changes in firing rate. Similarly, this 
negates the possibility of spurious dissimilarity of cross-task classification models attributed to 
within-neuron changes in baseline firing rates across tasks, independent of area-specific changes 
in firing rate.  
 
Statistical evaluation of classifier performance 

The mean and standard deviation classification accuracy reported herein include testing of 
each individual k-fold. Significant differences between accuracy distributions were tested using a 
two-sample Kolmogorov Smirnov test, Bonferroni-corrected for the total number of distribution 
comparisons.  

Classification model reliability was further evaluated using Cohen’s kappa statistic (Cohen, 
1960). The kappa statistic is an objective measure of classification reliability. Unlike raw or 
chance-normalized prediction accuracy, kappa provides a meaningful metric with which to 
compare the performance across classifiers — even with uncommon numbers of classes — 
because it is a bound statistic that relies on the observed and expected proportion of correct 
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predictions for each class of a model; it is agnostic to the number of classes being differentiated. 
It is described as     

 
𝜅 = 	

𝑝E	−𝑝G	
1 − 𝑝G	

 

 
where po is the proportion of correct predictions, and pe is the probability of guessing the correct 
class by chance. 

 
Non-spatial feature selectivity 

For two example neurons, we determined whether firing rate varied in each trial period as a 
function of non-spatial trial features (chosen object color, trial context, and their conjunction) 
from the current and previous trial (Figure 5A and B). Key trial events delineated trial periods. 
The post-reward period and pre-context period were equally split intervals of time between the 
start of the current trial (~200ms after reward from the previous trial ended) and the instant the 
subject reached the central corridor. The context appearance period spanned the entire length of 
the corridor, when the context was visible as a texture applied to the maze walls. Upon reaching 
the end of the corridor, the subject’s view in the maze was gently corrected to face cardinal 
direction north or south precisely, and subsequently both objects were triggered to appear 
simultaneously in the ends of the maze. This marked the start of the object appearance period. 
The object appearance period ended and the object approach period started ended on the same 
frame that the subject initiated a turn towards the chosen object for that trial.  

We used multiple linear regression to determine whether each neuron’s firing rate was 
modulated as a function of non-spatial trial features (i.e., trial context, trial object colors, and 
their conjunction) in each trial period of the associative memory task. This procedure was 
repeated using trial features for the current and previous trial. Formally,  

 
𝑦9A	 = 𝛽K9A +	𝛽M9A𝑥M9A + 𝛽=9A𝑥=9A +	𝛽O9A𝑥O9A +	𝜀9A 

 
where y describes the change in a neuron’s firing rate within each task period (i; 1, post-

reward period; 2, pre-context; 3, context appearance; 4, object appearance; 5, object approach) 
for current and previous trial features (j; 1, current trial features; 2, previous trial features). Fit 
parameter (β0) describes the intercept of the regression line. e estimates the residual. β1, β2, and 
β3 describe the effect of chosen object, trial context, and their conjunction, respectively. We 
assessed statistical significance of each of these parameters using a partial F-test, wherein the 
error of the full model is compared to that of a model with one parameter omitted. The 
proportion of all neurons (n=183) with significant fit parameters for object, context or their 
interaction is reported in Figure 5C. 

 
Sensory versus Mnemonic Trial Feature Encoding 

 
The F-statistic of the fit parameters β1, β2, and β3 were used to compare sensory and 

mnemonic encoding of associative memory trial features in individual neurons. Specifically, 
Figure 7A shows the scatterplot of neurons’ regression coefficient during the goal approach 
period (sensory encoding) versus the post-reward period (memory encoding).  
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The proportion of neurons with significant regression coefficients for each parameter was 
compared using McNemar’s test of proportions (Figure 6A, insets). 

The relationship between sensory and memory encoding for each trial parameter for each 
neuron was characterized using the Pearson correlation coefficient rho (Figure 6B). Rho was 
calculated over 10,000 bootstrap iterations, and Figure 6B shows the median and 96.7% 
confidence interval (alpha = 0.05/number of trial parameters). 

 
Trial Type Classification 

 
Trial type classification (Figure 7) was done using Glmnet (Friedman et al., 2010) using 

firing rates from all neurons included in the spatial decoding analyses (n=152). For the Sensory 
condition, each neuron's firing rate in each from the Corridor, Goal appearance and Goal 
approach periods were included as predictors. For the Memory condition, firing rates from the 
Post-reward and Pre-context periods were used as predictors. In the Sensory+Memory condition, 
all 5 periods were used. Because of the high ratio of model predictors to training and testing 
examples for these analyses, Glmnet classification was used with elastic net regularization. A 
nested cross-validation procedure was used to appropriately tune model hyperparameters 
(regularization parameter lambda, and elastic net L1-L2 weighting parameter alpha, via grid-
search) and test on hold-out sets of trials never seen by the trained model.  
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Supplementary Materials: 

Online Movie 1. Foraging task trials. 
https://youtu.be/aWvheMzxMJo 

Three example trials of the Foraging task from session W0325.  
Top: LFP trace (white streaming line) and single unit action potentials (blue ticks, sound) 
recorded from unit W0325.A1M0.2.  
Circle and dot: monkey’s eye position in the virtual environment.  
Bottom right: time from trial start.  
Bottom left: Name of every object that falls within 3 degrees of the foveated position.  
 

Online Movie 2. Associative memory task trials. 
https://youtu.be/RHx9Lw65oDw  
Four example trials of the Foraging task from session W0325.  
Top: LFP trace (white streaming line) and single unit action potentials (blue ticks, sound) 
recorded from unit W0325.A1M0.2.  
Circle and dot: monkey’s eye position in the virtual environment.  
Bottom right: time from trial start.  
Bottom left: Name of every object that falls within 3 degrees of the foveated position.  

 
	  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

 
	  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

40 

Figure S1. Hippocampal recordings: planning, mapping and verification. Related to Figure 1.  
Schematic representation of the major steps in planning, mapping, and verification of electrode 
trajectories and recording sites.  
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Figure S2. Individual neuron characteristics and example neurons. Related to Figure 1. 
(A) Burst fraction, spike width, and firing rate of all recorded neurons (n = 183). Purple and 
green circles mark the example neurons shown in (B) and (C), respectively.  
(B) Example neuron W0325.A1M0.2 inter-spike-interval distribution and average waveform. 
Shaded area, SEM.  
(C) Example neuron R0910.Hc7.3 inter-spike-interval distribution and average waveform. 
Shaded area, SEM.  
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Figure S3. Example associative memory task reward hierarchy. Related to Figure 1. 
(A) Example of the reversed two-context, three-object reward value hierarchy for recording 
session W0325.  
(B) Two example trials from the recording session. Subject trajectories through the maze are 
colored according to the time from trial start (color bar). White arrow indicates the object of 
higher reward value. 
(C) Approximate first-person-view of the monkeys during each trial at position b. White arrow 
indicates the object of higher reward value.  
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Figure S4. Single neuron place fields in each task. Related to Figure 3. 
(A) Number of place fields per neuron in each task. 
(B) Locations of concident place fields for all neurons with more than one place field in each 
task.  
(C) Location of coincident place fields for all neurons with at least one place field in each task. 
	  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

47 

	  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/295774doi: bioRxiv preprint first posted online Apr. 6, 2018; 

http://dx.doi.org/10.1101/295774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 

Figure S5. Comparison of significant neurons’ spatial information content in each task. Related 
to Figure 3. 
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Figure S6. Rewarded-aligned spike rasters. Related to Figure 4. 
(A) Rewarded locations in session W0325 during the Foraging task (left) and Associative 
memory task (right).  
(B) Reward-aligned rasters for example neuron W0325.A1M0.2 in each task.  
(C) Rewarded locations in session R0910 during the Foraging task (left) and Associative 
memory task (right).  
(D) Reward-aligned rasters for example neuron R0910.Hc7.3 in each task.  
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