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SUMMARY
The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain
deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication
in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at
different spatiotemporal scales.We used a virtual reality task in which animals selected one of the two targets
in the arms of the maze, according to a learned context-color rule. Our results show that during associative
learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic
plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories.
On the other hand, layer II/III LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter
would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without
necessarily triggering fast synaptic plasticity.
INTRODUCTION

The primate lateral prefrontal cortex (LPFC) and hippocampus

(HPC) are two brain regions that integrate high-level sensory infor-

mation and play an important role in memory function. Lesion

studies have shown that the HPC plays a fundamental role in

long-term memory formation, for which HPC microcircuits

possess enhanced synaptic plasticity (Bittner et al., 2017).

On the other hand, the LPFC (areas 9/46) is known to play a

fundamental role in short-term memory encoding, specifically

layer II/III (Arnsten, 2013; Spaak et al., 2017). Short-termmemories

(e.g., briefly being able to remember a telephone number) are en-

coded in patterns of neural activity across populations of neurons

that vanishafter a fewseconds (Leavitt et al., 2017). It is reasonable

to assume that short-term memories do not necessarily trigger

long-term synaptic plasticity. We hypothesize that the neural co-

des underlying neuronal communication and information process-

ing in the primate HPC and layer II/III LPFC microcircuits are

spatiotemporally tailored to service the corresponding memory

functions of the two structures.

A mechanism that links trains of action potentials to synaptic

plasticity is temporal summation: a compression of synaptic
events over time that produces coincidence of postsynaptic po-

tentials and triggers plastic changes in individual synapses (Kan-

del et al., 2012). Neuronal firing patterns that cluster spikes over

short time intervals such as bursts can produce temporal sum-

mation and therefore induce synaptic plasticity (Thomas et al.,

1998; Remy and Spruston, 2007). Burst firing in individual neu-

rons is often found in brain areas associated with long-term

memory formation, such as the HPC (Bliss and Collingridge,

1993; Lisman, 1997). However, burst firing has also been re-

ported in the prefrontal cortex, classically associated with en-

coding short-term memories (Womelsdorf et al., 2014). An issue

that has not been thoroughly studied in primates is how the abil-

ity to fire bursts of action potentials compares between HPC and

LPFC neurons during behavior.

In the monkey prefrontal cortex, spike bursts in layer V neu-

rons are associated with the onset of selective attention and

are synchronized with the phase of beta and gamma frequencies

in anterior cingulate cortex (Womelsdorf et al., 2014). However,

during working memory (WM) tasks, most studies in the primate

LPFC have computed spike rates over a second or more and

documented the existence of persistent firing in layer II/III (Leavitt

et al., 2017). Using linear classifiers, some studies have shown
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that spike rates computed over at least 400- to 500-ms intervals

maximize decoded information (Leavitt et al., 2017; Roussy

et al., 2021), suggesting that LPFC neurons fire spikes sparsely

over such intervals.

One possibility is that the time structure of the spike train in the

HPC and the LPFC is ‘‘tailored’’ to perform different functions. In

the HPC, spikes may be concentrated in bursts to maximize the

probability of plastic changes in individual synapses via temporal

summation. This would be in line with the primary role of the HPC

in long-term memory formation (Eichenbaum et al., 2016). In the

LPFC, spikes may be more sparsely distributed over time, which

may favor information encoded over a larger population of neu-

rons that can temporarily maintain and broadcast short-term

memory signals locally and to other brain areas without neces-

sarily triggering synaptic plasticity. The latter would be compat-

ible with the role of neurons in LPFC layer II/III encoding short-

term memory (Fuster and Alexander, 1971; Constantinidis and

Goldman-Rakic, 2002).

Here, we compare the prevalence of spike train bursts and

their relationship to task performance in the HPC and LPFC of

macaque monkeys performing a spatial navigation associative

memory task in a virtual environment. We found that neurons

in both structures encode information about task variables

(e.g., task periods and memory associations). However, HPC

neurons more often compress spikes into bursts relative to

LPFC layer II/III neurons. In the HPC, but not in the LPFC, bursts

increase in frequency as performance improves as animals learn

the task. We demonstrate that it is possible to decode task-

related information from burst rates in the HPCwith similar accu-

racy to decoders using spike rates. On the other hand, in the

LPFC, burst-rate decoders performed substantially worse than

spike-rate decoders. Additionally, we demonstrate that HPC

neurons encode task-related information over shorter time win-

dows and with fewer neurons relative to the LPFC.

RESULTS

We trained 4 monkeys (Macaca mulatta) on a context-object as-

sociation task and recorded the responses of neurons from area

CA3 of the HPC of two animals and from layer II/III of LPFC area

9/46 in the other two animals. During the task, animals navigated

through a virtual X maze using a joystick (Figures 1A and 1B).

Upon arriving at a decision point, where the maze branched

out into two arms, two objects appeared at the arms’ ends.

The animal had to navigate toward one of the objects to obtain

a reward. The target object was defined by the contingency of

two features, the object’s color and the walls’ texture; e.g., for

objects cyan and green: when the texture of the maze walls

was wood, the target was cyan, whereas for a steel wall texture

the target was green (see Figure 1D; STAR Methods; Gulli et al.,

2020). Monkeys learned new associations every day until they

became proficient at the task (see example in Figure 1C).

Different color-wall texture associations were achieved by

changing the target colors while leaving the wall (contexts) the

same across sessions. In a 50-trial performance assessment

window (see STAR Methods), they achieved average perfor-

mances of 75.8% (monkey W, HPC), 61.3% (monkey R, HPC),

74.5% (monkey T, LPFC), and 84.3% (monkey B, LPFC) correct
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trials. The theoretical chance performance in this two-alternative

forced-choice task was 50%. We also trained the LPFC mon-

keys on a WM task where they were cued to one of 9 locations

in a virtual arena, and after a 3-s memory delay, they had to navi-

gate to the cued position (Figures 1E and 1F; see Roussy

et al., 2021).

Prevalence of burst firing in HPC and LPFC single
neurons
We recorded the responses of neurons in the HPC using single

electrodes (Figure 1G) and in the LPFC using microelectrode ar-

rays (Utah arrays, 10 3 10 electrodes, 1.5-mm electrode length)

implanted in area 9/46, ventral and dorsal to the principal sulcus

targeting layer II/III (Figure 1H). Data were spike sorted and single

action potential times were extracted and synchronized to task

events. We classified neurons in each area into narrow and

broad spiking (Figures S1A and S1B). This method shows

some inaccuracies at separating putative interneurons from py-

ramidal cells (Torres-Gomez et al., 2020). However, considering

that the majority of the neurons in the cortex are pyramidal cells

(DeFelipe, 2012; DeFelipe et al., 2013; Yuste et al., 2020), we

restricted our analyses to broad-spiking neurons and assumed

that they were in their majority pyramidal cells. Pyramidal cells

broadcast information between brain regions, and in structures

such as the HPC and the LPFC, they play a fundamental role in

memory coding. We recorded from putative pyramidal cells,

205 in the HPC over 37 sessions and 333 in the LPFC over 2 ses-

sions (see STARMethods). We quantified the firing rates of these

neurons in both areas during the different task periods. Spikes of

HPC neurons frequently occurred within 7 ms intervals (example

in Figure 2A and blue spikes in Figure 2C). This was not the case

for LPFC neurons, which fired more sparsely (example in

Figures 2B and 2D). Indeed, when comparing the interspike in-

terval (ISI) distributions of the two example units per trial period,

the HPC unit shows a bias to short ISIs (Figure 2E) compared

with the LPFC unit (Figure 2F).

We examined the probability density function for ISIs across all

broad-spiking neurons during the period between the start and

the end of the task, including the inter-trial intervals, in the two

regions (Figures 3A and 3B). HPC neurons had a large peak

below a bursting threshold of 7 ms ISIs compared with the

LPFC. Additionally, we calculated the rate of change for ISI

values, and in the HPC distribution it approaches 0 at around

7 ms (Figure 3A, inset) but remains close to 0 after a brief onset

transient in LPFC. This suggests that HPC neurons frequently fire

bursts with ISIs at around 7 ms. We further measured a burst

fraction which quantifies the proportion of ISIs at or below

7ms (Figures 3C and 3D). HPC neurons had a significantly higher

burst fraction (median = 0.092) than LPFC neurons (median =

0.027) (rank-sum test, Z(216,367) = 10.45, p < 0.05) (Figure 3D).

We noticed that as the firing rate increases, the probability of ISIs

being below 7ms increases in the LPFC (Pearson correlation co-

efficient r = 0.67, p < 0.05). This was not the case in the HPC,

where the correlation was not statistically significant (r =

�0.06, p > 0.05). The positive correlation between burst fraction

and firing rate in LPFC neurons may suggest that their ISI distri-

bution is approximated by a Poisson distribution (with some

deviance as it approaches 0).
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Figure 1. Recording from monkeys during virtual navigation learning task

(A) Experimental setup where monkeys were seated in front of a monitor and used a joystick to navigate the virtual environment. Eye position wasmonitored, and

juice used as reward.

(B) Top-down view of maze with example trajectory split into four different task periods: post reward, context, decision, and goal (approach).

(C) Example sessions from monkeys and from each area showing all trajectories separated into north and south trials.

(D) The rule example defined cyan as the higher value object in context one (wood), and lower in context two (steel), and the inverse for the green object.

(E) Setup for virtual spatial working memory control task. Monkeys were again seated in front of a monitor and used a joystick to navigate. Image of arena has

potential target locations indicated in red.

(F) Still images of the screen during an example trial.

(G) MRI-based reconstruction of recording positions in the right HPC of monkeys W and R.

(H) Array locations on area 9/46 for monkeys B and T.
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Figure 2. Differences in firing patterns between two example units in HPC and LPFC

(A and B) Session rasters showing example unit activity for 30 min, with background indicating the different trial periods.

(C and D) Trial rasters for the post-reward period with ISIs %7 indicated, occurring more frequently in the HPC. The example unit’s waveform is superimposed,

comprising broad-spiking neurons with a similar task firing rate of 1.8 Hz.

(E and F) ISI rate distributions for the different periods. Note that the HPC unit has much more activity below 20ms than in the following 20 ms, whereas the LPFC

unit has a more uniform distribution.
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We used a method from Livingstone et al. (1996) to

compute a probability distribution for ISIs as a function of

firing rate relative to that predicted by Poisson firing neurons.

For each neuron, we computed a burst index (BI, see STAR

Methods), a bounded ratio of the measured ISIs, and the Pois-

son-predicted ISIs below a threshold of 7 ms. A positive value

means shorter ISIs than predicted by a Poisson distribution

and suggests that the cell often fire bursts, while a value at

or below 0 indicates the opposite. The BI of HPC cells (me-

dian = 0.14) was significantly higher than the BI of LPFC cells
2158 Neuron 110, 2155–2169, July 6, 2022
(median = �0.11, Z(216,367) = 8.60, p < 0.05) (Figure 3E). The

BI for LPFC cells did not correlate with firing rate (r = �0.007,

p > 0.05). The BI for HPC cells was negatively correlated with

the firing rate (r = �0.42, p < 0.05), indicating that as the firing

rate increases, the BI decreases. This result seems counterin-

tuitive. One likely explanation is that at low firing rates, many

spikes in HPC neurons are concentrated within bursts, while

at high firing rates, neurons fire spikes ‘‘outside’’ bursts. The

latter leads to the same number of bursts, with increases in

the number of spikes and consequently in the firing rate.
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Figure 3. HPC cells are more prone to

bursting, and the LPFC burst fraction is

correlated with firing rate

(A) The probability density distribution of all ISIs for

broad-spiking neurons in the HPC, normalized to

the value at 60 ms. The HPC ISIs have a pro-

nounced peak below the 7-ms burst threshold.

The inset demonstrates the relationship between

the distribution and its first derivative, which stabi-

lizes after 7 ms.

(B) Same as (A), except for broad LPFC neurons.

(C) Burst fraction plotted against firing rate, where

HPC cells have a high burst fraction at low firing

rates.

(D) Population density of burst fractions.

(E) Same as (C), but with burst index (BI), where

LPFC BI is no longer correlated with firing rate,

and there is a slight negative correlation for the

HPC.

(F) Population density of BI.

(G) GCV for ISIs between 0 and 40 ms plotted

against BI. HPCGCV values decrease at high burst

index values.

ll
Article
Distributions of BIs for different thresholds can be found in

Figure S2. However, we carried out the rest of the analyses

using the burst threshold of 7 ms because of the similar

ranges found for other thresholds and the stabilization of the

differential values at 7 ms (inset in Figure 3A). Some analyses

may include other thresholds when required.

To rule out the possibility that increased HPC bursting was

due to spike sorting issues that may have resulted in classi-
fying multiple units as a single unit, we

calculated a signal-to-noise ratio mea-

sure (d’) (Leavitt et al., 2013;

Figures S1C and S1D). We did not find

a significant correlation between BI

and d0 for HPC (r = �0.01, p >0.05),

and a small negative correlation for

LPFC (r = �0.037, p < 0.05). These re-

sults suggest that any over estimation

of burst occurrence may have

happened in the LPFC; yet, bursts

were more often found in

HPC neurons, which argues against

this variable acting as a confound to

our main results. We also measured fo-

veation durations to ensure that more

frequent saccades were not generating

more presaccadic bursts (Figure S7).

Finally, we calculated the geometric

coefficient of variability (GCV, see

STAR Methods; Equation 4) for ISIs

between 0 and 40 ms. The GCV

quantifies the variability of the ISIs.

If spikes are generated within bursts

with regular ISIs (see HPC example

unit, Figure 2E), then the GCV will

be low. If spikes are more sparsely
distributed, with variable ISIs as in the LPFC example

unit (Figure 2F), then the GCV will be high. We found

that in both areas, GCV increases with BI for BI values

below zero (Figure 3G). LPFC neurons continue this trend

at BI > 0 (Figure 3G, red circles); however, HPC neurons

with positive BI values do not: high BI HPC neurons show

the lowest GCV values, indicating that bursts show highly

regular ISIs and that they may be at least in part
Neuron 110, 2155–2169, July 6, 2022 2159
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Figure 4. HPC bursting increases with performance, while LPFC bursting does not

(A) Performance defined by a hit rate for 20 trial blocks evenly spaced throughout each session for both the HPC and LPFC monkeys.

(B) Normalized burst and spike rates for blocks of 20 correct trials during the post-reward period. HPC bursts have a significant positive slope, as do HPC spikes,

while LPFC bursts are stable and LPFC spikes have a slight significant negative slope. A comparison of burst rate and firing rate can be seen in Figure S3

(C and D) Same as (A and B), but for the workingmemory task in LPFC. Figure S3Boxes represent quartiles and error bars extend to the maximum value within 1.5

times the inter-quartile range, and numbers above distributions represent the number of outliers above the limit of the y-axis.
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influenced by the intrinsic properties of these HPC neurons

(blue circles in Figure 3G).

HPC bursting increases with task performance in post-
reward period
We hypothesized that if bursting plays a role in learning and en-

coding of long-term memory, we should find a correlation be-

tween burst rates and task performance. To ascertain whether

animals learned the association between the context and object

color over the session, we binned the data in epochs of 20 trials,

evenly distributed through the session (beginning, ¼, ½, 3=4, and

end) and calculated the mean performance rate for each epoch

and for each session. There is a positive correlation between per-

formance rate and time epoch for the 37 sessions with the HPC

monkeys and the 17 sessions with the LPFCmonkeys. The slope

for the HPC sessions was 0.06 (95% CI = 0.04–0.08, Figure 4A),
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and the slope for the LPFC sessions was also 0.06 (95% CI =

0.04–0.08), indicating that animals learned the task at similar

rates across all sessions. On the other hand, for the control

WM task across 3 sessions, the slope was not significant

(�0.06, 95% CI =�0.16–0.04, Figure 4C). These results suggest

that improvement in performance across a session during the

associative learning task was due to the animals learning

the task.

We next measured the burst rate (number of bursts) and spike

rate during five epochs of 20 correct trials evenly spaced

throughout each session (Figure 4B). For HPC neurons that

had bursts in at least two epochs, bursting increased (slope =

0.020, 95% CI = 0.007–0.033). The number of spikes also

increased (slope = 0.012, 95% CI = 0.005–0.020). For the

LPFC, bursting did not significantly increase (slope = �0.001,

95% CI = �0.013–0.012); however, the firing rate slightly
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decreased (slope = �0.002, 95% CI = �0.004–�0.001).

During the WM task, bursting in the LPFC did not change

(slope = �0.003, 95% CI = �0.014–0.008, Figure 4D), and the

spike rate slightly decreased (slope = �0.002, 95% CI =

�0.004–�2e�5). The latter effect may be related to previous re-

ports of decreases in spike rates in LPFC neurons when stimuli

lose novelty (Wilson and Rolls, 1993; Miller and Desimone,

1994; Asaad et al., 1998). Changes during the associative

learning task were not due to changes in burst rate over the

time course of the session, since the results hold when corre-

lating performance and burst rates independently of time during

the session. We found a significant correlation between HPC

bursts and hit rate (r = 0.13, p < 0.05), indicating that the previous

result was not solely due to time during the session. On the other

hand, HPC spike rates were not significantly correlated with per-

formance (r = 0.11, p > 0.05). In the LPFC, both correlations were

negative but not significant (LPFC bursts r =�0.4, p > 0.05, LPFC

spikes r = �0.07, p > 0.05) (Figure S3). This result demonstrates

that in the HPC, but not in the LPFC, bursting was positively

correlated with improvements in performance as the animal

learned the task.

Information about task periods encoded in burst and
spike rates in HPC and LPFC
Beside the associative learning component, our task had

different periods corresponding to different segments of the

maze (post-reward, context, decision, goal approach, and

reward). We examined whether neuronal spikes and/or bursts

encoded information about the different task periods in the

HPC and LPFC. For example, a neuron might respond to right

turns during the goal approach period. An alternative might be

a neuron that, during the post-reward period, integrates the

reward feedback with the conjunction of the context and the

chosen target in the previous trial. A deeper analysis of neuronal

selectivities can be found in Gulli et al. (2020). Here, we will

concentrate on task periods since our goal is to compare the in-

formation contained in burst and spike rates.

For each neuron, we computed mutual information during the

first four task periods (post-reward, context, decision, and goal

approach) for spike and burst rates, using a permutation test

for significance. The spike rate was defined as the number of

spikes that occurred during the entire task period divided by

the period’s duration. The burst rate was defined as the number

of bursts (at least 3 spikes with ISIs <7 ms) during a task period,

divided by the duration of the period. We also calculated burst

rates with thresholds at 10, 15, and 20 ms (Figure S4), but

most of our analyses focus on the 7-ms threshold. To ensure a

reasonable sample size, we only used neurons with at least 60

completed trials. Additionally, we split cells based on BI values,

with high bursting neurons (HBNs) having a BI > 0 and low

bursting neurons (LBNs) having a BI < 0. The proportions of cells

that were classified as HBN or LBN were different between

areas. Of 192 HPC neurons, 131 (68%) were HBNs, whereas of

333 LPFC neurons, 69 (19%) were HBNs (rank-sum z =

10.8, p < 0.05).

From the 131 HBNs in the HPC, 71 (54%) encoded significant

information about task periods; from those, 67 (94%) had signif-

icant spike-rate information and 43 (61%) had significant burst-
rate information (Figure 5A). From the 69 HBNs in the LPFC, 52

(68%) encoded significant information about task periods; from

those, 50 (96%) had significant spike-rate information, and 15

(29%) had significant burst-rate information (Figure 5A). The pro-

portion of neurons with significant burst-rate information was

significantly higher in the HPC (61%) than in the LPFC (29%,

rank-sum z = 3.48, p < 0.05). From the 61 LBNs in the HPC,

70% encoded significant information about task periods; from

those, 43 (100%) had spiking information and 5 (12%) had

burst-rate information. These populations completely overlap-

ped (Figure 5B). From the 264 LBNs in the LPFC, 200 (76%) en-

coded significant information about task periods; from those,

198 (99%) had spiking information and 25 (13%) had significant

burst-rate information (Figure 5B). Unlike for HBNs, the propor-

tions of neurons with significant burst-rate information for

LBNs were similar (rank-sum z = 0.16, p > 0.05).

There were not only more cells with significant information in

the spike rates, but the spike rates also had more information,

on average, in the HBNs in both the HPC (burst median = 0.10,

spike median = 0.14, rank-sum, z = 2.48, p < 0.05) and the

LPFC (burst median = 0.08, spike median = 0.14, z = 2.35,

p < 0.05) (Figure 5C). This was also the case for the LBNs in

both the HPC (burst median = 0.10, spike median = 0.14, z =

2.73, p < 0.05) and the LPFC (burst median = 0.08, spike me-

dian = 0.15, z = 2.23, p < 0.05). When comparing information in

HBNs, there was a significant difference between the HPC (me-

dian = 0.10) and the LPFC (median = 0.08), using a rank-sum

test (z = 2.04, p < 0.05). In terms of the information available

in the spikes, the HPC (median = 0.14) was not significantly

different than the LPFC (median = 0.14, z = 0.30, p > 0.05).

For the LBNs, there was no significant difference between the

information available in the two areas in the bursts (HPC me-

dian = 0.10, LPFC median = 0.08, z = 0.17, p > 0.05) or in

the spikes (HPC median = 0.14, LPFC median = 0.15, z =

0.06, p > 0.05). Thus, the HPC had a higher proportion of

HBNs with significant information than the LPFC, and there

was more information in the burst rates of HBNs in the HPC

relative to the LPFC.

To further explore the effect that the burst threshold may

have on mutual information, we calculated mutual information

for thresholds at 10, 15, and 20 ms. Remarkably, for the

HBNs in the HPC, the proportion of neurons with significant in-

formation was stable across the different thresholds (slope =

0.005, 95% CI = �0.007–0.018). In contrast, there were signif-

icant increases in the three other sub-populations: LPFC HBNs

(slope = 0.010, 95% CI = 0.001–0.020), LPFC LBNs (slope =

0.020, 95% CI = 0.014–0.027), and HPC LBNs (slope =

0.038, 95% CI = 0.011–0.065, Figure 5D). One may consider

that more neurons become significant as the threshold is

increased, resulting in cells with significant spike-rate informa-

tion, which have a more Poisson-like ISI distribution. The fact

that the proportion of HBNs with significant information in the

HPC is relatively stable across thresholds, suggests that

bursting in these cells is tightly constrained and likely influ-

enced by the neurons’ intrinsic properties (Zeldenrust et al.,

2018). These results show that for HBNs, burst rates in the

HPC carry more information about task periods than in the

LPFC. An analysis including a 4-ms bin is included in Figure S4.
Neuron 110, 2155–2169, July 6, 2022 2161



A B

C D

Figure 5. HPC high bursting neurons have more neurons with significant information, and these neurons have more bits of information than

LPFC neurons

(A) Proportions of HBNs that have significant information in either the burst rate, the spike rate, or more often, both rates.

(B) Same as (A) but for LBNs.

(C) Amounts of information in bits for each significant neuron in HBN (above) and LBN (below) populations. Spikes have more information than bursts in all sub-

populations. HPCHBNs havemore information in the burst rate than LPFC neurons. Boxes represent quartiles and error bars extend to themaximum value within

1.5 times the inter-quartile range. * represent significant difference at p < 0.05.

(D) Proportion of cells that have significant information for different burst thresholds. Proportions significantly increase for every group except high bursting HPC.

Fitted lines with significant slopes (p < 0.05) are represented as solid lines.
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Decoding task-period information from bursts and spike
rates in HPC and LPFC populations
To determine how results at the level of individual neurons gener-

alize to populations, we conducted population-level analyses us-

ing linear classifiers. For the HPC, recordings were done over

many days, so we constructed a pseudo-population of neurons

by pooling neurons and drawing the same numbers of each trial

period for each neuron (Mendoza-Halliday and Martinez-Trujillo,

2017). To compare LPFC data with HPC data, we shuffled the
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LPFC trial order, destroying simultaneity and the correlation struc-

ture of the population. Thus, the analyses use pseudo-populations

of HBNs in both the HPC and the LPFC.We trained a support vec-

tor machine (SVM) to decode the trial period based on the spike

rate or the burst rate from 60 trials of a subsampled pseudo-pop-

ulation of 60 cells from each area. We ran 5-fold cross-validation,

getting one average performance, and then ran 50 subsamples to

get 50 average performances. We also shuffled trial labels for

each population to compute chance performances.
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Figure 6. Population code for the HPC is similar between bursts and spikes, but not for the LPFC

(A) Average decoding accuracy for trial period in spike and burst codes in the two areas. All values are significantly different from the shuffles.

(B) Confusion matrices for burst and spike decoding in both areas. There is no distinct diagonal in LPFC burst decoding, but there is in the other three matrices.

(C) Spike-burst decoding index, where the difference between spike and burst decoding is significantly higher for the LPFC and close to 0 for the HPC. Decoding

of task parameters in the goal approach period can be found in Figure S5. Boxes represent quartiles and error bars extend to the maximum value within 1.5 times

the inter-quartile range.
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All decoding performances were significantly different from

chance performances, with no overlap between the confidence

intervals for the actual values and the permutation values (Fig-

ure 6A). The HPC burst-rate decoding accuracy (median =

67.9%) was lower than the spike-rate decoding accuracy (me-

dian = 89.6%, permutation test, p < 0.05). In the LPFC, burst

decoding accuracy (median = 47.1%) was lower than spike-

rate decoding accuracy (median = 89.2%, p < 0.05). To contrast

burst- versus spike-rate decoding between the two areas, we

computed a spike-BI index (see STARMethods Equation 5) (Fig-

ure 6C). There was a significant difference between the HPC in-

dex (median = 0.12, 32%higher performance for spike rates than

burst rates) and the LPFC index (median = 0.31, 90% higher per-

formance for spike rates than for burst rates) (t test, t(98) = 23.8,

p < 0.05). Spike rates perform almost three times better than

burst rates in the LPFC than in the HPC. Thus, although in the

HBN spike rates were overall more informative than burst rates

in both areas, burst rates had a more similar performance

compared with spike rates in the HPC than in the LPFC.

One may argue that the lack of decoding in the LPFC from

bursts may have been due to a lack of engagement in the asso-

ciative learning task. This is unlikely since during the control WM

task bursting was similar to that during the associative learning
task (Figure S6A) and decoding of cued and memorized location

from burst rates also performed significantly lower than from

spike rates (Figures S6B). It could also be that the LPFC burst de-

coders performed worse than the burst decoders in the HPC

because of differences in the number of periods without any ac-

tivity (burst rates of 0 in the LPFC). To assess this, we calculated

the percentage of periods in each session during which a neuron

was silent, for both bursting and spiking activity (Figure S1E).

Most neurons had a large percentage of periods without bursting

activity, with the HPC having a similar median (97%) to the LPFC

(98%) (rank-sum test, z = 1.31, p > 0.05). For spiking activity, the

HPC had a significantly higher proportion of silent periods (me-

dian = 55%) compared with the LPFC (median = 7%, z = 6.43,

p < 0.05). Importantly, for bursts there was not a significant dif-

ference in the proportion of ‘‘silent’’ periods between areas.

To explore how encoded information was distributed across

neurons, we examined how decoded information from both

burst and spike rates changes as a function of neuronal

ensemble size and composition. We used the HBNs that had sig-

nificant mutual information in their burst rates. We first estimated

decoded information in individual neurons, and then we paired

the most informative neurons with every other neuron to

find the best duo, grouping that duo with every other neuron to
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find the best trio, etc. (see Leavitt et al., 2017; Backen et al.,

2018). We ran this process 50 times. For both the HPC and the

LPFC, ensembles of a relatively small number of neurons satu-

rated the decoder’s performance (Figure 7A). We fit an exponen-

tial function to the data (Equation 6). All fits had an r2 > 0.95. We

calculated the point at 95% of the maximum performance to

conduct comparisons between areas and burst- and spike-

rate decoders. The HPC reached the 95% rate for spike rates

at an average of 4.85 (SD = 1.30) neurons and for the burst

rate at a similar number of 4.74 (SD = 1.25) neurons (t(95) =

0.43, p > 0.05). For the LPFC, firing rate ensembles reached

the 95% point at an average of 4.50 (SD = 1.63) neurons and

burst rate ensembles at a similar number of 4.20 (SD = 1.72) neu-

rons (t(97) = 0.90, p > 0.05). The 95% point was not significantly

lower for the LPFC than the HPC for firing rate decoders (t(96) =

1.18, p > 0.05), and there was no significant difference between

the 95% points for the burst rates between areas (t(96) = 1.79,

p > 0.05). Thus, ensembles with small numbers of neurons (�5)

were sufficient to saturate the decoder’s performance for both

burst rates and spike rates.

To quantify the differences in performance between burst-

rate decoders and spike rate decoders in each area, we

computed a performance index. We used asymptotes of the

performance equation for the 50 optimized decoders. For

each decoder, we subtracted the burst-rate performance

from the spike-rate performance and divided by the sum of

the performances (Equation 5). The HPC performance index

was lower (mean = 0.16, SD = 0.09) than the LPFC index

(mean = 0.24, SD = 0.11; t(98) = 4.40, p < 0.05). These results

indicate that burst rate contributes significantly more to infor-

mation decoded in the HPC than in the LPFC and that in

both areas task-period information can be decoded from small

ensembles of neurons.

Effect of integration time windows in decoded
information
To study the timescales over which both areas integrate informa-

tion, we examined decoding performance as a function of inte-

gration time and window length for both areas. We used the

same ensemble-building technique as in the previous analyses.

However, instead of integrating over the entire task period, we

took differently sized time windows centered at the middle of

the period (i.e., 25, 50, 100, 150, 200, 300, 400, and 500 ms).

We repeated the same curve fitting procedure as in Figure 7A

and calculated the 95% point for all the curves (Figure 7B).

Curves were normalized to the maximum asymptotic perfor-

mance, which happened to be at the longest window (500 ms).

We found that the ensemble size at the 95% points was signif-

icantly lower for the HPC (mean = 7.0, SD = 0.45) than for the

LPFC (mean = 8.3, SD = 0.56; paired t test, t(7) = 8.82,

p < 0.05) (Figure 7B). We further calculated the performance of

each ensemble as a fraction of the curve maximum for the

average data in the 500-ms ensembles. The latter allows sub-

tracting LPFC fractions from the HPC fractions for every time

window and ensemble size to create an ensemble index (HPC-

LPFC) that controls for differences in maximum performance be-

tween areas. A positive index means the HPC achieves a higher

maximum decoding performance with the same ensemble size.
2164 Neuron 110, 2155–2169, July 6, 2022
A negative index means the opposite. A two-way ANOVA on the

ensemble index was significant for both factors, time window

size (F(7) = 65.8, p < 0.05) and ensemble size (F(19) = 17.6,

p < 0.05); the interaction was not significant (F(133) = 1.0,

p > 0.05). We further carried out two-sided t tests to determine

which area—at an ensemble of size n and at a particular time

point—performed better than the other. As demonstrated in Fig-

ure 7C, at lower ensemble sizes across all time windows, the

HPC ensembles outperform the LPFC ensembles (p < 0.05).

Remarkably, for the 25-ms time window, the HPC continues to

outperform the LPFC for all ensemble sizes. These results

demonstrate that HPC ensembles can ‘‘compress’’ more infor-

mation into smaller time windows (25 ms) and using fewer units

(up to 4) as compared with the LPFC.

DISCUSSION

Burst firing in HPC and LPFC neurons
Here we have used the definition of bursts as trains of action po-

tentials that occur with close temporal proximity (<7 ms) or are

more concentrated over time than predicted by a Poisson pro-

cess. We found that the HPC has a larger proportion of putative

principal neurons firing bursts than layer II/III of the LPFC. This

agrees with previous studies in the HPC that have reported an

abundance of burst firing in principal cells across species (Bliss

and Collingridge, 1993; Lisman, 1997; Skaggs et al., 2007; Xu

et al., 2012). It also agrees with studies in macaque LPFC layer

II/III reporting that information decoded duringWM and attention

tasks ismaximizedwhen using timewindows of 400ms or longer

(Backen et al., 2018; Leavitt et al., 2017; Tremblay et al., 2015).

We should make clear that in both structures, spike rates (count-

ing spikes inside and outside bursts) were more informative than

burst rates. The latter suggests that not all informative spikes,

even in the HPC, are compressed into bursts. Thus, the function

of bursts may be diverse and not only related to information (Zel-

denrust et al., 2018). Indeed, burst rates in the HPC, but not in the

LPFC, increase with performance during the post-reward period

of the associative memory task, suggesting that bursting may

trigger fast synaptic changes in the HPC during learning (Harris

et al., 2001). Such changesmay occur to a lesser degree, slower,

or more distributed in the LPFC.

Our results are unlikely due to differences in the type of infor-

mation encoded by the HPC and LPFC neurons. Both the HPC

(Doucet et al., 2020; Gulli et al., 2020) and the LPFC (Roussy et

al., 2021) encode spatial information during virtual navigation.

Additionally, both areas encode information about stimuli during

associative learning tasks (Brincat and Miller, 2016; Gulli et al.,

2020). Indeed, we show that neuronal populations in both areas

encode task-period information; e.g., learning associations,

spatial position in the virtual environment, or both (Figure S5).

One may argue that the differences in the number of neurons

firing bursts between the two areas is due to differences in the

pattern of eyemovements. Because saccadesmay be preceded

by a burst, different numbers of saccades may lead to differ-

ences in bursting. In our task, animals could freely make sac-

cades. Arguing against this explanation, we found that the dura-

tions of intersaccadic intervals, or foveations, are similar across

HPCand LPFC animals (Figure S7). It is also unlikely that neurons
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Figure 7. HPC firing rates carry information in compressed time windows and with fewer neurons

(A) Optimized ensembles for burst and spike rates yielded by neurons that have significant burst information, and their fits to Equation 6. HPC burst-rate en-

sembles are closer to the performance of HPC spike-rate ensembles in terms of maximum performance and position of the 95% threshold crossing. Shaded

regions represent 95% confidence intervals.

(B) Optimized decoders for spike rate in different timewindows,where HPC ensembles have a smaller range. Left axis is performance as a proportion ofmaximum

achieved performance, and right axis is the raw performance. 95% of the maximum point is indicated with an ‘‘x’’ on each curve.

(C) HPC proportion of maximum performance minus LPFC proportion of maximum performance. The difference shows that for HPC, smaller ensembles perform

better, as well as performing better in smaller time windows. Asterisks indicate significant difference from 0 (p < 0.05).
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in the different areas encode saccade parameters linked to burst

firing distinctively. A recent study has reported that during a

naturalistic task only 2%–3% of LPFC neurons are tuned for

saccade parameters (Roussy et al., 2021). In the HPC, neurons

are generally not tuned for saccade parameters (Doucet et al.,

2020; Gulli et al., 2020).

It has been reported that a feature of HPC principal cells is

rapid burst firing, measured by ISIs below 20 ms (Lisman,

1997; Skaggs et al., 2007), or shorter, at 6–8 ms (Ranck,

1973; Buzsáki, 2015). Bursts can contain a significant propor-

tion of all spikes, and a high burst fraction (fraction of all ISIs

that are below 20 ms) is a distinguishing feature of HPC cells

in primates (Skaggs et al., 2007) as well as rodents (Lisman,

1997). The HPC spike burst has consistently proven intriguing

to scientists (Kepecs et al., 2002; Lisman, 1997; Zeldenrust et

al., 2018). For example, bursts with short ISIs <6–8 ms are quite

common along the perforant pathway, from the dentate gyrus

to the subiculum regions (Mizuseki et al., 2012; Pernı́a-Andrade

and Jonas, 2014; Simonnet and Brecht, 2019). It has been

debated whether bursts can be the units of information coding

in the HPC (Harris et al., 2001). Our results indicate that

although there are also informative spikes outside the bursts,

we could decode task-period information from burst rates

with an accuracy close to that of spikes rates. This was not

the case in the LPFC, where burst-rate decoding was close

to chance and significantly lower than rate decoding. The latter

suggests that LPFC spikes outside a burst play a larger role in

information coding relative to the HPC.

In the macaque LPFC, few studies have examined the role of

burst firing in the coding ofWMsignals (Constantinidis andGold-

man-Rakic, 2002; Womelsdorf et al., 2014; Voloh and Womels-

dorf, 2018). Constantinidis and Goldman-Rakic used an un-

bounded BI (comparing ISIs with predictions from a Poisson

process) in LPFC neurons and found the median to be 0.9, just

below 1, which would match the Poisson prediction. They calcu-

lated their index during the fixation period of an oculomotor de-

layed response task, where visual stimulation and dynamics

were different from our virtual task. This may explain why they

found 10% of cells with an index value R4, approximately 0.6

in our BI, but we found no LPFC neurons above 0.5. We also

used a slightly larger window of ISIs, so this may have affected

our results if ISI peaks drastically dropped off before 7 ms. Addi-

tionally, we were restricted to layer II/III of the LPFC, and their

study may have included neurons in deeper layers that can be

more prone to bursting (Womelsdorf et al., 2014). We did find

bursting neurons in the LPFC. However, most of the informative

spikes occurred outside the burst. Indeed, bursts rates in the

LPFC performed poorly when used to decode information during

the associative learning and WM tasks.

Memory functions of HPC and LPFC and relationship to
bursts
Amain hypothesis in our study was that neural codes in the HPC

and LPFC have evolved to serve different memory functions.

Bursting is more prevalent in the HPC and correlates with task

performance when the trial information needs to be consolidated

(Gulli et al., 2020). Given the relationship between burst firing,

temporal summation, and synaptic plasticity, our results indicate
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that the prevalence of burst firing in the HPC serves long-term

memory formation. Indeed, bursting has been shown to be

more reliable than single spikes at producing postsynaptic po-

tentials (Thomas et al., 1998; Remy and Spruston, 2007). A study

(Xu et al., 2012) ablated excitatory postsynaptic potentials trig-

gered by single spikes outside bursts by decreasing

synaptotagmin-1 in rodent HPC CA1, but preserved the poten-

tials triggered by burst spikes. Under these circumstances,

learning was preserved. However, when they repeated the

manipulation in the medial prefrontal cortex, learning was

impaired. These results suggest that in the HPC, burst spikes

play a fundamental role in memory formation, while spikes

outside the burst play a lesser role. The inverse is true for the pre-

frontal cortex.

In the LPFC, spike rates integrated over long time intervals

(>400 ms) provide the most information about items held in

short-term memory (Leavitt et al., 2017; Roussy et al., 2021).

Indeed, when we used the 2-s delay period, our decoders

achieved high accuracywith spike rates, but whenwe used burst

rates, accuracy dropped to chance (Figure S6C). This LPFC

sparser code relative to the HPCmay avoid triggering rapid syn-

aptic plasticity and consolidation of all short-term memories,

which would be counterproductive. Miller and colleagues have

proposed that WM information can be stored in changes in syn-

aptic weights that last hundreds of milliseconds (Miller et al.,

2018). This is different from the plasticity that enables long-

term memories to form and at the very least does not appear

to be caused by bursts with ISIs below 7 ms across all neurons

in the LPFC. Nevertheless, we did find bursting neurons in the

LPFC during both tasks. These neurons may serve functions

such as broadcasting and communication with other brain areas

(Womelsdorf et al., 2014).

Two distinct architectures for two different memory
functions
Differences in the neural codes employed by the HPC and LPFC

may be due to different cortical architectures that serve different

functions. The HPC contains three cortical layers (paleocortex)

and relatively well-defined input and output pathways (O’Keefe

and Nadel, 1978). The HPC cornu ammonis (CA) subfields

have limited connectivity with the neocortex. Output from the

HPC is almost exclusively through the subiculum and the ento-

rhinal cortex. On the other hand, The LPFC is extensively con-

nected to many other brain structures (Yeterian et al., 2012).

The LPFC is organized in 6 cortical layers with amajor expansion

of layer II/III where neurons encoding WM have been identified

(Constantinidis and Wang, 2004; Arnsten, 2013). Neurons in

this region have extensive functional connectivity with one

another that depends on their receptive and memory field loca-

tion (Leavitt et al., 2013) and such fields cover the entire visual

space (Bullock et al., 2017).

One interesting question would be whether in vivo burst-firing

regimes in the HPC are mainly due to intrinsic properties of the

principal cells or to network dynamics. Studies in rodents have

shown that CA3 neurons also fire bursts in vitro when isolated

from the rest of the brain (Ranck, 1973; Traub and Wong,

1981; Mizuseki et al., 2012). This bursting behavior may be

required to induce processes such as long-term potentiation



ll
Article
(LTP) that enables coding of long-term memories (Bliss and Col-

lingridge, 1993). Burst firing may be ‘‘built up’’ into the intrinsic

machinery of the HPC principal cell rather than solely arising

from the HPC networks’ dynamics. Such intrinsic cellular ma-

chinery makes the HPC burst firing robust, enabling long-term

memory formation under a variety of network firing regimes.

However, onemay also consider the role of network connectivity

and dynamics adding heterogeneity and efficiency to neural

communication and plasticity across the cortical mantle.

In the LPFC, a recent study has reported the existence of

pyramidal cells in layer II/III that are intrinsically ‘‘bursty,’’ based

on their response profiles to square wave current pulses

(González-Burgos et al., 2019). Interestingly, this study reported

that burst neurons were more abundant in the LPFC relative to

the lateral intraparietal area. Thus, it is possible that neocortical

areas also differ in the way they cluster spikes over time, de-

pending on their function and connectivity. The latter further in-

dicates neural codes are heterogeneous and can serve different

functions by changing their spatiotemporal features.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male rhesus macaques (Macaca mulatta) were used in these experiments, two in HPC experiments (7 and 14 years old, and 7kg

and 12kg respectively) and two in LPFC experiments (10 and 9 years old, 12kg and 10kg respectively). All procedures followed Ca-

nadian Council on Animal Care guidelines and were carried out at either McGill University or Western University and were approved

by the respective University Animal Care Committees.

METHOD DETAILS

Electrophysiological recordings
HPC recordings were carried out using 1-4 high impedance (400-1500 kOhms) tungsten electrodes lowered each day to the right

HPC, using co-registered image guidance for trajectory and depth, with examples seen in Figure 1G of recording locations. Most

recordings were done in the mid to posterior putative CA3 region. Further information on electrode placement and targeting is avail-

able in Gulli et al. (2020). LPFC recordings were acquired using two 96-channel Utah arrays positioned at the posterior end of the

principal sulcus, on the dorsal and ventral gyri of the principal sulcus and the anterior gyrus of the arcuate sulcus, targeting area

9/46. The shank length was 1.5mm, and was impacted into the brain, so was likely in layer II/III, and electrodes had an impedance

ranging from 20 to 1500 kOhms. Signals were acquired at 30 kHz using one (HPC) or two (LPFC) 128-channel Cerebus recording

systems (Blackrock Microsystems) and saved for later offline sorting, done with Plexon Offline sorter (version 4.5.0, Plexon Inc.).

Spike sorting for the learning task was carried out by two experimenters (RAG and BWC) and sorting on all channels in both HPC
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and LPFCwas verified by BWC. Timewas not used as a feature during sorting, but units withwaveform shapes that varied extensively

ormergedwith other units were excluded from these analyses. Spike sorting for theworkingmemory taskwas semi-automated using

the T-Distribution method in Offline Sorter before being manually refined by MR.

Behavioral task
The learning tasks were very similar, taking place in a double ended Y maze, termed the Xmaze and described previously (Doucet

et al., 2016; Gulli et al., 2020). At the end of each Y, were two colored discs towards one of which the animals would navigate to

receive the associated reward. The reward was dictated by the context, which was indicated by a texture that was applied to the

walls, either a dark grey ‘‘steel’’ texture or a brown ‘‘wood’’ one. The highest value color in one context was the lowest in the other

context (Figure 1D). The LPFC recordings were done with only this high and low option, but the HPC had a middle color that was

worth half the reward in both contexts. Monkeys used the joystick to navigate to their chosen color, receive the associated reward,

and then turn around and navigate back towards the other end to make another choice. Figure 1 shows an example trial trajectory,

and the trajectories for two example sessions (Figures 1B and 1C).

Theworkingmemory task set-upwas the same, however took place in a circular arenawith a 3x3 array of potential target locations,

and a starting area on the side fromwhere themonkey started each trial (Figure 1E). Trials startedwith aCue periodwhere one of the 9

locations had a red fog presented for 3 seconds, followed by a 2 second Delay period, after which there was a 10 second Response

period where the monkey had to navigate to the cued location. More information on task performance is included in Roussy

et al. (2021).

Behavioral analysis
Monkeys were trained to be able to learn the task before recordings, and then presented with new combinations of colors each day,

picked pseudo randomly to avoid a color occurring two days in a row. We used a performance analysis window of the 50 trials pre-

ceding the final 10 trials (excluded because performance may falter as satiation is reached).

Calculating spike width
To separate neurons into putative principal cells and interneurons, we started by interpolating the waveform signals to 1MHz, and

then aligning the waveforms for a neuron to the minimum of the trough. We then calculated the mean waveform and measured

the duration between the minimum (trough) and the maximum (peak) in microseconds (Figure S1A). To determine where to divide

the neurons into narrow and broad spiking, for each area we fit two Gaussians, and used the local minimum as the threshold to sepa-

rate them (HPC = 334ms, LPFC = 333ms). Because the results were within 1ms, we used the threshold for the LPFC as there weremore

neurons and it might be slightly more accurate. We then discarded all narrow neurons (<10%) because we did not have enough to

analyze separately and focused our results on the putative pyramidal cells for the rest of the study.

Calculating burst propensity
The initial analysis of ISIs was just done by taking all spikes recorded from broad spiking neurons during the task and pooling them for

each area.We removed all ISIs greater than 60ms and then normalized histograms to value at the stable period at 60ms for each area.

To assess the stability of the curve of the population, we calculated the difference between each point and plotted it for the HPC. We

calculated the burst fraction as the fraction of all ISIs during the task that were equal to or below 7ms. Because this could start to

correlate with high firing rates, we also made a burst index (BI) for the neurons based on the ISI histogram and the predicted ISI dis-

tribution based on a Poisson distribution with the calculated firing rate. To predict the probability of ISIs of a certain duration, we fol-

lowed the method of Livingstone et al. (1996), taking the firing rate averaged over the whole task. Using Equation 1, where l = firing

rate, and t = time bin. We calculated the probability for each 1ms time bin from 2-40ms, and then normalized these

fðtÞ = le� lt (Equation 1)

measures by the sum of all these predictions. We then did the same thing with the measured ISIs, normalizing by the sum of the

measured ISIs between 2 and 40ms. We then summed the predicted values from 2 to 7ms and subtracted that from the sum of the

measured values between 2 and 7ms. We divided this difference by the sum of the two sums to bind our index between -1 and 1 (see

Equation 2). We then repeated this for threshold values of 4, 10, 15 and 20ms.

burst index =

P
ISIs measured � P

ISIs predictedP
ISIs measured +

P
ISIs predicted

(Equation 2)

To calculate the d’ noisemeasurement, wemeasured themean and the variance at three locations, the trough (minimum peak), the

peak (maximum peak), and the first point at the baseline of the spike, before any spike deflections, to get a measure of the noise. We

then calculated two d’ values, one comparing the trough to the baseline, and the other comparing the peak to the baseline both using

Equation 3. We then summed these two values and calculated the correlation with the BI (calculated at 7ms threshold).

d
0
=
meanðpeakÞ � meanðbaselineÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðpeakÞ � varðbaselinep (Equation 3)
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To calculate the geometric coefficient of variation (GCV) we analyzed only ISIs below 40ms, using Equation 4 where s is the stan-

dard deviation of ISIs.We used theGCV instead of theCV because the distribution of ISIs was not normal andwasmore similar to log-

normal.

GCV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2

ln � 1
p

(Equation 4)

Foveation analysis
It has previously been reported that saccades can be preceded by a pre-saccadic burst in neurons, and it is possible that this could

be driving a difference between burst measures in the two areas if there were differences in eye-movement behavior between the

monkeys. To assess this, we used the method from Corrigan et al., (2017) to classify eye position data into saccades and foveations,

code for which can be found at https://github.com/JMTNeuroLab/VR_EyeSignalClassification. Briefly, saccades were identified

based on acceleration thresholds, and then the onset and offset of saccades were defined based on deviation from main direction

of the saccade, which would indicate that themovement of the saccade was no longer driving the signal, and direction changes were

now driven by noise in the foveation. Periods between saccades were classified as foveations. We measured the durations of fovea-

tions as a proxy for frequency of saccades and compared the distributions across all sessions between the LPFC and HPCmonkeys.

Performance slope analysis
To assess performance, we chose 5 epochs: the first 20 trials, the last 20 trials, and the 20 trials centered on the¼,½, and 3=4 marks of

the session. We simply calculated the hit rate for the sessions during these epochs, and then performed a regression to determine if

there was a positive slope, indicating that hit rate increased over the course of the session. We included 15 other sessions (monkey

T = 8, monkey B = 7) for the performance to show that the performance was consistent but did not analyze any neural data from these

sessions. For the WM task, we analyzed three sessions (monkey T = 2, monkey B = 1) for both the behaviour and the neural data.

Burst and firing rate slopes
Similar to the performance analysis but restricted to periods after correct trials to control for reward effects. To calculate the rates of

bursts or spikes, and to be able to use only correct trials that approximated the trials used to assess performance, we used 20 correct

trials: the first 20, the last 20, and the 20 centered on the ¼, ½, and 3=4 marks of the session. We only analyzed broad spiking neurons

that had at least one burst in at least two epochs, analysing the same neurons for both the burst and spike rates. To normalize the

values, we summed the rates across epochs, and used this value to divide each epoch’s rate.We again ran a regression to determine

if there was a consistent trend in the rates of bursts or spikes.

Calculating information
To calculate mutual information, we used only correct trials. Bursts were detected as any group of three or more spikes where all ISIs

were equal or less than 7ms. The timing of the burst was the onset of the first spike, and which ever period the first spike occurred in

was considered the period that the burst happened in. We split the task into four behaviorally separate periods: the post reward

period, the context period, the decision period, and goal approach period. The post reward period started at the end of the reward

administration and is potentially when the monkey is incorporating the knowledge gained from the previous trial. This continues until

they navigate to the start of the corridor where the context appears, which is the start of the context period. The decision period starts

at the appearance of the target objects, when they must choose between the two, and the goal approach period starts at the begin-

ning of the first turn of more than 10 degrees towards an object, and proceeds until they reach the target, just before reward admin-

istration. The period of reward administration was not analyzed. The durations of each task period vary based on which period it is,

and by trial, but we calculated rates based on the duration of each individual period. We only analyzed broad spiking neurons, and

separated neurons into high bursting neurons (BI>0, HBNs) and low-bursting neurons (BI<0, LBNs) and analyzed these subpopula-

tions separately. We used 60 sample rates from each trial period for each neuron to calculate themutual information using the Neuro-

science Information Theory Toolbox (Timme and Lapish, 2018). We then ran 5000 shuffles to generate the p-value for the mutual in-

formation via permutation. We then ran this whole process, starting from the subsampling, 50 times and analyzed the means of the

mutual information and the p-value for each neuron.

We also repeated this whole analysis with burst thresholds set at 10ms,15ms and 20ms, and fit a line to the 4 proportions of units

that had significant burst rate information to determine whether this proportion increased with the threshold for the different

subpopulations.

Decoding analysis
For the decoding analysis, we used support vector machine (SVM) decoding from LIBSVM v.3.23 (Chang and Lin, 2011) using five-

fold cross-validation and a linear kernel on rates that were normalized between 0 and 1.We only used broad spiking, HBNs and again

randomly sampled 60 rate pairs from each trial period and ran the decoding analysis on each set of rates before shuffling the labels

and decoding again to get a measure of chance decoding. We repeated this 50 times to take the mean accuracy and mean chance

decoding of the same trials for both spike rate and burst rate decoding. Significance was determined by permutation test, where the
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mean had to be greater than 95% of the shuffled performances to be significant. To examine the differences between the perfor-

mance of the burst and spike decoder within an area, and to compare this across areas, we created a decoding index (see Equa-

tion 5). This gave us 50 index values to run a t test on.

Spike� burst index =
decoding accuracy for spike rate � decoding accuracy for burst rate

decoding accuracy for spike rate+decoding accuracy for burst rate
(Equation 5)

To analyze navigation and task parameter signals, we used the decision period of correct trials, and separated them into left and

right decisions, and based on the two colors chosen. This gave us 4 combinations, and we used a subsample of 30 trials from 30

neurons, and we again used 5-fold cross validation. We ran this process 50 times on different subsamples and reported the distri-

butions of mean decoding accuracies achieved for both areas for bursts and spikes.

Optimized decoders
For the optimized ensembles, we used the same set up for the SVM, but for the pool of neurons we only used HBNs that had sig-

nificant mutual information (p <.05) for a specific rate. This limited the number of neurons we could use. To control for differences

in number of eligible neurons in the two areas, for an iteration of the optimized decoder, we would randomly select up to 30 neurons

from which we would build the decoder. For the first test, we used only neurons with significant mutual information for burst rate,

which limited us to only 15 cells in LPFC, so we used this population size for both areas. Each neuron was tested individually to

find the neuron with the best decoding accuracy. This neuron was then paired with every other neuron, and we ran an SVM on

each duo to find the best duo. The best duo was used to find the best trio that included the best duo, and so on. This does not neces-

sarily find the absolute optimal duo or trio, but it is an effective method for exploring the decoding space without having to exhaus-

tively try all possible permutations, which can be computationally expensive. Indeed, it results in better decoding accuracies than

simply using the best neurons based on individual performance, as illustrated in Leavitt et al. (2017). After building the decoder to

either 12 units for the initial analysis, or 20 units for the time window analysis (described below) we then selected another set of

random units and repeated the process to build another optimized decoder, building 50 optimized decoders in total to give us a pop-

ulation of results to analyze.

For the decoders built to assess the contribution of neurons we only used neurons with significant information in the burst rate. We

fit an exponential function (Equation 6) to each performance curve, and calculated the point where performance was 95% of the

asymptote which is defined as 1-c. This gave us 50 points for each set of decoders so we could run t tests on these points within

areas and within spike and burst rates, however, we discarded any ensembles that did not reach the 95% point within 3 standard

deviations of the distribution of 95% points.

y = 1 � a � e�
�

x
b

�
� c (Equation 6)

The time window analysis used different time windows within which to calculate the rates. Because we wanted to analyze the

compression of the full signal, we only used the firing rates for this analysis, and used neurons that had significant firing rate mutual

information values. We used time windows of 25, 50, 100, 150, 200, 300, 400, and 500 milliseconds instead of integrating over the

whole trial period. We chose to center the windows in the middle of the period. We built the optimized decoders with pools of 30

neurons, but only built them to 20 neurons because they would have already saturated decoding performance before then. We built

50 optimized decoders for each timewindow for each area. To fairly compare the effect of timewindows, we took themaximumof the

average performance across ensemble sizes of the best decoder (500ms) and calculated the performance of all the decoders, at

each ensemble size, as a fraction of such maximum performance. To compare these performance fractions, we took the HPC frac-

tions for each time window and sample size and subtracted the corresponding LPFC fractions, which gave us a population of differ-

ences at each ensemble size and time window. We ran a two-way ANOVA on these differences to assess for effects of time window

size or ensemble size on the differences in performance. To determine which differences between the two areas were significantly

different from 0, we calculated a one-sample t-test for each ensemble size and time window.

Working memory task analysis
We analyzed 2 sessions from monkey T and one form Monkey B and combined the neurons from each to analyze burst indices and

decoding performance. We were unable to record any hippocampal data in this task. We calculated the burst index as indicated

above, and then ran a Kolmogorov-Smirnov test to determine whether there was a difference between the BI for the learning task

and the working memory task. We also ran a decoder on bursting and firing rates during the Cue and Delay periods to determine

if there was encoding of the target column location (grouped into three columns, left, right and center). Again, running 50 subsamples

of 19 trials in each category (57 total trials for each subsample).
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