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Abstract 
Neuronal populations can expand their information encoding capacity using mixed selective 
neurons. This is particularly prominent in association areas such as the Lateral Prefrontal Cortex 
(LPFC) that integrate information from multiple sensory systems. During naturalistic conditions 
where subjects have agency, it is unclear how LPFC neuronal ensembles process space and time 
varying information. Here we show that during a virtual navigation task that requires associative 
memory and decision making, individual neurons and neuronal ensembles in the LPFC time-
multiplex their selectivity for different task features to fluidly encode the temporal contingencies 
of the task and the animal’s choice. Neurons in ventral regions showed more selectivity for non-
spatial features, while dorsal regions showed selectivity for space and eye movements. These 
results demonstrate that during naturalistic tasks with fluid scenery and spatiotemporal dynamics, 
LPFC neurons and neuronal ensembles time-multiplex the components of their selectivity, 
expanding the spatiotemporal capacity of their neural codes. 
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Introduction 
The primate lateral prefrontal cortex (LPFC) sits on top of the sensorimotor processing hierarchy 
and has been implicated in cognitive functions, including selective attention, working memory 
and rule encoding (Duncan, 2001; Miller & Cohen, 2001; Petrides, 2005a). Single neurons in the 
LPFC have been reportedly tuned to multiple task features in visuomotor tasks (Asaad et al., 
1998; Mansouri et al., 2020; Wallis et al., 2001). This property has been termed mixed 
selectivity, which can be linear or non-linear, depending on how feature components are ‘mixed’ 
in neuronal firing rates (Rigotti et al., 2013). Mixed selectivity has been suggested to be 
behaviorally and computationally relevant, as it can increase the dimensionality of 
representations and facilitate read-outs of task-relevant features (Parthasarathy et al., 2017; 
Rigotti et al., 2013). However, most tasks exploring selectivity in LPFC neurons have been 
conducted using simple visual displays and constraining eye movements. It remains unclear how 
individual neurons and neuronal ensembles in LPFC mix information in scenarios with complex 
dynamic scenery, unconstrained eye movements and sensorimotor events occurring in a 
continuous and time-fluid manner.   
 The LPFC is heavily interconnected with numerous cortical areas and has been 
cytoarchitecturally divided into areas 8, 9, 10, 12, 45 and 46v/d, with tracing studies describing 
distinct anatomical connectivity patterns across these areas (Barbas, 2015; Barbas & Pandya, 
1989; Petrides, 2005b). A recent study revealed distinct functional connectivity patterns in the 
dorsal (e.g., areas 9/46) and ventral (areas 45/47) LPFC, corresponding to dorsal and ventral 
high-level sensory areas (Xu et al., 2022). However, a functional organization to the LPFC has 
not been as clearly delineated. Single neurons in the dorsal and ventral LPFC have been reported 
to preferentially represent spatial and visual/object information respectively (Meyer et al., 2011; 
O’Reilly, 2010; Riley et al., 2016). However, representations of numerous modalities and levels 
of sensory integration have been reported in both dorsal and ventral LPFC (Kadohisa et al., 
2015; Siegel et al., 2015; Tang et al., 2021). These findings may be linked to the integrative 
nature of the LPFC, with its ability to merge task-relevant information (Duncan, 2001; Miller & 
Cohen, 2001).  
 Previous studies have shown that neurons in the LPFC can become selective for 
combinations of relevant features during associative learning tasks (Mansouri et al., 2020; 
Rouzitalab et al., 2023; Wallis et al., 2001). However, these studies have used behavioural tasks 
involving controlled stimulus presentation of few task-relevant features in simple displays while 
constraining eye movements. The LPFC must be able to perform its function in real-world 
conditions, while subjects perform complex tasks and explore visual scenes via gaze shifts. 
Tremblay et al. (2022) demonstrated that single neurons in the LPFC maintain their 
representation of task features during unrestrained gaze movements. Moreover, Roussy et al. 
(2021) showed that representations of spatial locations by many LPFC neurons during virtual 
reality navigation in complex visual environments remain robust to changes in gaze position. 
These studies suggest that many LPFC neurons contain spatiotopic representations of the 
environment. More recently, Corrigan et al. (2023) have shown that LPFC neurons encode views 
of visual scenes suggesting that LPFC neurons may mix spatial and non-spatial information. 
However, it is unclear whether these components of mixed selectivity multiplex over time or are 
mixed together in a single multidimensional representation. 
 Here, we investigate how mixed selective neurons in LPFC (areas 9/46) encode spatial 
and non-spatial features of the environment during an associative memory task that requires 
virtual navigation through a complex visual environment. To this end, we recorded the responses 
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of hundreds of neurons in two monkeys (Macaca mulatta) as they completed the task and freely 
explored the different elements of the visual scene via gaze shifts. Importantly, the task had 
different periods in which different features serially appeared. We found that individual neurons 
and neuronal ensembles in the LPFC time-multiplexed their representations of task relevant 
features and space. The dorsal and ventral LPFC had different tuning profiles and temporal 
dynamics. The ventral LPFC preferentially represented non-spatial task-features whereas the 
dorsal LPFC predominantly encoded space.  
 
Results 
We trained two male monkeys (Macaca mulatta) to perform a context-color association task in a 
virtual environment (Figure 1). The animals used a joystick to navigate in an X-shaped maze, 
with each trial beginning in one arm of the maze (Figure 1c). Once the monkeys entered the 
corridor the walls changed texture to steel or wood (the context). When the monkeys reached the 
end of the corridor two coloured discs appeared, one at the end of each arm of the maze. The 
location of the colors (left or right arm) was randomly determined for each trial (color pair order 
or CPO). The context determined the color disc which the monkeys needed to navigate to for a 
reward, termed target side (Figure 1d). Monkeys performed a fixed association trial block and 
then learned new associations each day. Performance was significantly above the 50% chance 
level (Figure 1e and methods). Across all sessions, Monkey B had a mean (± standard error) of 
80.9 ± 0.02% correct trials, and monkey T had a mean of 70.3 ± 0.03% correct trials. 
 
LPFC neurons are tuned to task features during virtual navigation 
While the monkeys completed the virtual reality navigation task, we recorded from a total of 813 
neurons (512 in monkey B and 301 in monkey T) during six sessions. Single neurons were 
isolated manually (see methods). We computed firing rates and spike density functions for each 
isolated neuron and condition and found many neurons gave distinctive responses between 
conditions (see example Figure 1f). Single neuron tuning to task-related variables was 
determined using a multivariate linear regression model (see methods). Using correct trials, we 
investigated the proportion of neurons tuned to context, CPO, and target side. In this case, mixed 
selectivity refers to selectivity to two or more of the above variables. We investigated the 
proportion of tuned neurons over a 1200ms window (-200ms to 1000ms) around the context and 
goal onset epochs. During the context onset, we found significantly more neurons tuned to 
context in the ventral LPFC compared to the dorsal LFPC: 8.3% compared to 1.3% in monkey B 
(Chi-Square, χ = 16.71, p<0.001) and 9.3% compared to 2.5% in monkey T (Chi-Square, χ = 
5.39, p<0.05). Here ventral and dorsal LPFC represent the location of the MEA relative to the 
principal sulcus. The dorsal array covers regions of areas 8Ad and 46d. The ventral array covers 
the ventral subdivisions of these areas, 8Av and 46v, and may extend to area 45 (estimation 
according to Petrides, 2005).  

During goal onset, the appearance of the colors allowed the monkeys to determine which 
side to navigate towards. During this epoch, both monkeys had neurons in the ventral LPFC 
tuned to context (12.4%), CPO (6.2%), target side (17.2%), and demonstrated mixed selectivity 
(21.2%; Figure 2). Additionally, both monkeys had a significant number of neurons in the dorsal 
LPFC tuned to target side (27.2%); however, only monkey B had a significant number of 
neurons with mixed selectivity (19.5%). The dorsal and ventral LPFC had a significantly 
different proportion of neurons tuned to these features (Chi-Square, χ = 12.20, p < 0.05 in 
monkey B, Chi-Square, χ = 30.36, p < 0.001 in monkey T).    
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LPFC neurons temporally mix task features during virtual navigation 
During the onset of the goal, the monkeys must associate the context with the appropriate color 
and navigate towards it. The naturalistic features of this task (e.g., gaze was unconstrained, and 
the animal initiated and conducted navigation at will using a joystick) allowed the monkeys to 
freely complete the task and navigate towards their goal, with no additional behavioural 
constraints. This provided us with the opportunity to explore neural dynamics in the LPFC which 
may take place while performing real-world context-target associations. To this end, we 
investigated neuron tuning around the goal onset epoch by performing multivariate linear 
regressions over a 400ms window running in steps of 20ms. Each unit was identified as being 
tuned to a feature if it remained significantly tuned over five consecutive steps.  

In both monkeys, a significant proportion of neurons were tuned for task features (Figure 
3a). Neurons in the ventral LPFC acquired tuning to task features in the same temporal pattern: 
first context, then CPO, and finally target side (Figure 3b). A significant proportion of neurons 
were tuned to the context at all times investigated, with a mean latency (± standard error) of 
130.1 ± 27.4 ms in monkey B and 118.2 ± 31.7 ms in monkey T. Individual neurons then 
demonstrated CPO tuning significantly later relative to context (296.2 ± 21.4 ms, p<0.001 in 
monkey B, 290.3 ± 25.2 ms, p<0.01 in monkey T, Wilcoxon rank sum). Neurons finally acquired 
tuning to the target side (493.3 ± 19.3 ms, p<0.001 in monkey B, 407.5 ± 26.2 ms, p<0.05 in 
monkey T, Wilcoxon rank sum). Neurons in the dorsal LPFC had different tuning profiles in the 
two monkeys. Both animals had neurons that were tuned to target side (450.7 ± 15.9 ms in 
monkey B, 528.7 ± 29.6 ms in monkey T). However, only monkey B had neurons in the dorsal 
LPFC tuned to context (214.2 ± 22.5 ms) followed by CPO (325.7 ± 15.4 ms, p<0.001, 
Wilcoxon rank sum). Many of the same neurons were tuned to different features over the course 
of the trial, demonstrating time multiplexing of their mixed selectivity (Figure 3c). We 
performed the same analysis with different alpha thresholds (0.01 and 0.001). Although this 
decreased the proportion of tuned units, our overall findings did not change (Figure S1a).  

To mimic natural behaviour, we did not constrain eye position in our virtual reality task. 
Thus, eye position or the allocation of attention (e.g., overt attention) associated to it could have 
had an influenced in the neural responses. To investigate this issue, we performed a two-step 
multivariate linear regression (see methods). We first calculated the mean x and y eye positions 
in the same 400ms windows used to analyze the neural data and fit the eye position to the 
normalized firing rates (FRs, Equation 2 in methods). The residual FR error (FR∈) was then 
used in a second multivariate linear regression model that used task-related features as 
independent variables (Equation 3 in methods). The total proportion of neurons tuned to task 
features following this analysis are presented in Figure S1b. Both monkeys had a bias to fixate 
on their chosen side, and monkey B had a bias to preferentially fixate on one of the two colored 
objects presented in some sessions (Figure S2). Therefore, removing eye-position related 
information resulted in fewer neurons being tuned to target side in both monkeys, and fewer 
neurons tuned for CPO neurons in monkey B due to his color preference bias. Despite this, we 
observed the same temporal pattern previously described in the ventral LPFC in both monkeys. 
Remarkably, unlike in the ventral LPFC, monkey B’s dorsal LPFC had no significant CPO tuned 
neurons until 380ms after the goal onset. This further suggests that unlike in the ventral LPFC, 
neurons in monkey B’s dorsal LPFC do not encode CPO prior to the target side or the allocation 
of attention/gaze to that side. 
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Decoding task features of ventral and dorsal LFPC neuronal ensembles across individual 
sessions 
We found that individual neurons are dynamically tuned to task features. However, single neuron 
analysis may not adequately capture the informational capacity of a population of simultaneously 
recorded units (Tremblay et al. 2015). We therefore used a linear support vector machine (SVM) 
to classify task-features from neuronal ensemble activity. We performed this analysis on each 
session separately, using sessions with at least 15 correct trials for each of the four conditions. 
We used firing rates integrated over the same 400ms windows in steps of 20ms around goal 
onset. 
 We trained and tested a linear SVM on normalized thresholded multiunit activity on each 
channel of the dorsal and ventral LPFC arrays (see methods). The mean (±2 standard error, SE) 
decoding performance across 12 sessions in Monkey B and 8 sessions in Monkey T is presented 
in Figure 4a. Each point is marked when the when the lower bound (mean – 2SE) exceeds 
chance performance. Task features could be reliably decoded following the same temporal 
pattern as observed with single neuron tuning. This suggests ensembles in the ventral LPFC 
represented context information throughout the task in both monkeys (orange traces in Figure 
4a). Additionally, CPO could be decoded from the ventral LPFC after the goal onset, followed 
by the target side. Only target side could be decoded from the dorsal LPFC in monkey T (right 
upper panel). However, context and CPO information could be decoded from the dorsal LPFC in 
monkey B (left upper panel). These results were observed across individual sessions in monkeys 
B and T (Figure S3). Permutation testing with shuffled labels was used to obtain a 95% 
confidence interval for individual sessions (see methods). We repeated the same ensemble 
analyses only including well isolated single neurons. There was no significant difference 
(Wilcoxon rank sum test) in decoding performance when training the classifier on multiunit 
activity and manually sorted spikes for both monkeys (Figure S4).  

We then compared decoding accuracies of task features from the dorsal LPFC, ventral 
LPFC and eye position using a Wilcoxon sign rank test at three 400ms intervals centered at 0ms, 
400ms and 800ms after goal onset (Figures 4b and S5). Context information could be decoded 
more accurately from the ventral LPFC compared to eye position (p<0.001 in monkey B, and 
p<0.01 in monkey T, Wilcoxon sign rank), and the dorsal LPFC (p<0.001 in monkey B, and 
p<0.01 in monkey T, Wilcoxon sign rank). CPO could also be more accurately decoded from the 
ventral LPFC compared to eye position at 400ms (p<0.05 in monkey B, and p<0.05 in monkey 
T, Wilcoxon sign rank), and the dorsal LPFC (p=0.05 in monkey B, and p<0.01 in monkey T, 
Wilcoxon sign rank). Given monkey B’s bias to fixate on one colour in some sessions (Figure 
S2), we performed a Spearman’s rank correlation between decoding accuracy from eye position 
compared to neural activity (Figure 4c). CPO information was independent of eye position only 
in the ventral LPFC at 400ms, consistent with our single neuron findings (Figure S1b). 
 
Task features are fluidly represented in the ventral LPFC  
Our population level analysis shows neural ensembles represent task-features following the flow 
of information during task trials or the cognitive operations the animal needs to perform the task. 
Individual neurons also fluidly represented task features, with different neurons acquiring or 
modulating their tuning throughout a trial (Figure 3). These temporal multiplexing of features 
would predict that the neural codes across the different trial periods are dynamic and likely do 
not generalize from one period to another. To investigate this issue, we trained a linear SVM to 
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classify task-features at each 400ms window and tested this at the other different time windows 
(Figures 5, S6 and S7).  

Context information was represented with a dynamic neural code (Figure 5a upper 
panels and Figure 5b). Context could be more accurately decoded at 0ms from goal onset when 
the classifier was trained at that time compared to later in the epoch at 400ms and 800ms in both 
monkeys (p<0.001 in monkey B, p<0.05 in monkey T, Wilcoxon sign rank) (Figure 5c). 
Conversely, context was more accurately decoded at 800ms from a classifier trained at that time 
compared to one trained at 0ms (p<0.001 in monkey B, p<0.05 in monkey T, Wilcoxon sign 
rank) (Figure 5c). Target side information was represented by a more persistent code (Figure 5a 
middle panels), with no difference in decoding accuracy at 400ms when trained at that time or at 
800ms in both monkeys (Figure S6 and S7). Finally, CPO demonstrated a partially dynamic 
neural code (Figure 5c middle column). Training a linear decoder to classify this feature at 
400ms demonstrated increased decoding accuracy at that time compared to a classifier trained at 
800ms (p<0.01 in monkey B, p<0.05 in monkey T, Wilcoxon sign rank); however, testing at 
800ms demonstrated the same accuracy when trained at 400ms and 800ms (p>0.05 in both 
monkeys, Wilcoxon sign rank). This suggests that there was a greater representation of CPO at 
400ms, but there was no additional CPO information present at 800ms. To rule out a bias in eye 
position influencing this feature in monkey B, we only used sessions (n=8) where he had no 
significant bias to fixate on one colour. Although this limits the bias of eye position, it likely 
does not completely remove it and may explain some of the cross-temporal decoding differences 
observed in both the dorsal and ventral LPFC (Figure S6).  

To corroborate whether this dynamic code was linked to the dynamic nature of individual 
neuron tuning, we compared the weights of our linear SVM for context to the regression 
coefficients (betas) from our single neuron multivariate regressions previously described (Figure 
3). As anticipated, there was a significant correlation between the regression coefficients of 
individual neurons tuned to the task-features and their weights determined by our linear decoder 
(Figure 6). This suggests our linear decoder uses the same neurons that are tuned at each time 
window. This stresses the fluid nature of the task but also a degree of serial information 
processing by single neurons and ensembles. 
 
Discussion 
We recorded single neuron responses in the dorsal and ventral LPFC of macaques while the 
animals navigated a virtual environment and performed an associative memory task with variable 
spatiotemporal structure. Our main results were 1) single neurons in the LPFC show mixed 
selectivity for task relevant features, 2) single neurons and ensembles time-multiplexed their 
selectivity for the different elements of the task depending on the time-relevance of that element 
to solve the task, and 3) while neurons in the ventral LPFC encoded spatial and non-spatial 
features, neurons in the dorsal LPFC encoded spatial information. 
 
Neural dynamics in a naturalistic setting 
Few studies have examined single neuron tuning in the primate LPFC in naturalistic settings. 
During most experiments, eye position is strictly controlled and stimuli are presented on a 
stationary background. In these studies animals do not have the ability to change their view or 
position in the environment and therefore cannot control the spatiotemporal dynamic of task 
elements. These restrictions have served as important controls limiting experimental confounds, 
but also limit the ability to generalize findings to many real-world scenarios. We reasoned the 
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LPFC must perform its function in complex environments in the presence of gaze movements 
and changing scenery. One study (Tremblay et al., 2023) trained monkeys to perform a simple 
associative memory task without limiting the animals’ head and eye movements. They showed 
that coding of relevant features in the LPFC was robust and not degraded by unstructured 
movements. Although this work is an important step towards understanding neural 
representations in naturalistic settings, it did not explore neuron tuning in a complex environment 
such as the one in our task where features changed as the animal voluntarily moved through the 
environment. This capacity to execute actions that cause a change in the virtual world is referred 
to as a feeling of agency (Bódi, 2022). Other studies have used virtual environments as a 
surrogate for real-world naturalistic settings and reported tuning for spatial working memory in 
LPFC and for stimulus features in the hippocampus (Corrigan et al., 2022; Gulli et al., 2020; 
Johnston et al., 2023; Roussy et al., 2021; Wirth et al., 2017). This factor should not be 
underestimated since here animals do not act as passive observers but as actors, triggering task 
events. 

Unconstrained naturalistic tasks in which subjects have agency may provide insights into 
the neural dynamics of the LPFC during real-world conditions. We showed that single neurons in 
the LFPC were serially tuned to relevant task features as they ‘appear’ in a naturalistic 
associative memory task: first representing context, followed by the CPO, and finally target 
location. Interestingly, neurons largely acquired tuning to the context shortly before the goal was 
triggered (Figure 3), despite this information being previously available, suggesting context was 
only represented in the LPFC when becoming immediately relevant. Furthermore, these neural 
representations were fluid over time, both at the single neuron (Figure 3) and ensemble level 
(Figure 5). Single neurons in the LPFC have been observed to non-linearly mix task-relevant 
features, allowing for flexible high-dimensional representations that can be read out from 
downstream cortical areas (Asaad et al., 1998; Dang et al., 2021; Fusi et al., 2016; Rigotti et al., 
2013). Our results support these findings and further show that LPFC neurons multiplex features 
in time as they become task relevant. This property would allow a single component of mixed 
selectivity to be represented over trial periods or entire trials. Possible advantages of time 
multiplexing are utilizing the same neurons to represent individual features as well as 
combinations of those features united by rules (Buckley et al., 2009; Mendoza-Halliday & 
Martinez-Trujillo, 2017; Tanji & Hoshi, 2008; Wallis et al., 2001), and a fluid representation of a 
spatiotemporal episode within the same population of neurons in the LPFC (Roussy et al., 2021). 
The LPFC has been proposed to serve as a buffer for episodic working memory (Baddeley, 
2000). The time multiplexing in this region may be critical for the spatiotemporal binding of 
stimulus features required during the perception of a memory episode.  
 
Anatomical and functional subdivision of LPFC 
The neural dynamics previously discussed was mostly found in in the ventral LPFC in both 
monkeys tested, suggesting a functional division withing this region. The ventral and dorsal 
LPFC had different tuning profiles while the monkeys completed the task, with more neurons in 
the ventral LPFC being tuned to visual and visuospatial features. The ordered tuning of context, 
target location and target side was observed only in the ventral LPFC. These results suggest the 
ventral LPFC is more likely to represent visual features as compared to the dorsal LPFC. These 
results are consistent with connectivity studies that show there is dorsal and ventral mapping of 
the LPFC to corresponding dorsal and ventral high-level visual areas (Barbas, 2015; Barbas & 
Pandya, 1989; Petrides, 2005b; Xu et al., 2022).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2024. ; https://doi.org/10.1101/2024.01.10.574378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.10.574378
http://creativecommons.org/licenses/by-nc-nd/4.0/


Other single neuron studies have demonstrated more mixed results regarding a functional 
organization to the LPFC (Asaad et al., 1998; Kadohisa et al., 2015; Meyer et al., 2011; 
O’Reilly, 2010; Riley et al., 2016; Siegel et al., 2015; Tang et al., 2021; Wallis et al., 2001). In 
contrast, we observe a relatively robust difference between single neuron tuning and ensemble 
dynamics between the ventral and dorsal LFPC. The increased cognitive demands of interpreting 
a complex scene and freely navigating through it may exacerbate underlying regional 
specializations in function. This is the first study to examine anatomical differences in LPFC 
function at the single neuron and population level during a virtual navigation task in which the 
subjects have agency. Importantly, our study demonstrates it is possible to use a virtual task to 
explore information processing in monkey LPFC neurons and offers novel insights into the 
dynamic nature of their mixed selectivity. 

Our results have implications for models of LPFC function and interactions with the rest 
of the brain. Interestingly, one recent study has shown that stimulation of the LPFC evokes 
selective activation of specific regions in associative areas of the neocortex (Xu et al., 2022). The 
connectivity of LPFC with early sensory areas was practically non-existent suggesting the LPFC 
mainly receives integrated information from association areas. Because the mixing of features is 
not solely a feature of the LPFC but may start in association cortices, the information that LPFC 
neurons integrate could be highly filtered and features may be already mixed. The latter may 
facilitate the time multiplexing of relevant features observed in our study as well as how 
feedback signals from the LPFC may reach association areas. Thus, the reported role of the 
LPFC on several components of cognitive control such as attention (Backen et al., 2018; Bichot 
et al., 2015; Duong et al., 2019; Lennert & Martinez-Trujillo, 2011), working memory (Roussy 
et al., 2021), perception (Mendoza-Halliday et al., 2018), rule coding (Buckley et al., 2009; 
Corrigan et al., 2022; Kaping et al., 2011), planning (Tanji et al., 2007) (see (Miller, 2000) for a 
review) could be understood in neurophysiological terms as containing populations of neurons 
that can serve as spatiotemporal integrators of information held in the focus of perceptual 
awareness. This may enable the high level of mental abstraction observed in anthropoid primates 
(Passingham & Wise, 2012) with larger prefrontal cortices.   
 
Methods 
 
Experimental Animals 
Two male rhesus macaques (Macaca mulatta; 7 and 14 years old, 7kg and 12kg respectively) 
were used in these experiments. The monkeys were trained to perform a virtual reality 
associative memory task and received a juice reward as a form of positive reinforcement for each 
session. All animal procedures were compliant with the Canadian Council on Animal Care 
guidelines and approved by the Western University Animal Care Committee.  
 
Electrophysiological recordings 
Lateral prefrontal cortical (LPFC) recordings were acquired using two 96-channel Utah arrays 
for each animal (Blackrock Microsystems). Each animal received a 3-Tesla T1-weighted MRI 
which was used for surgical navigation using Brainsight (Rogue Research Inc.). The Utah arrays 
were positioned just anterior to the arcuate sulcus, with one placed dorsal to the principal sulcus 
(areas 46d/9d) and one placed ventral to the principal sulcus (areas 46v/9v). Each shank was 
1.5mm and was therefore likely in layers II/III. Intraoperative images of the arrays’ positions for 
each animal are presented in Figure 1a, with the corresponding regions highlighted in the MRI 
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scans. Signals were obtained at 30kHz using a Cerebus Neural Signal Processor (Blackrock 
Microsystems) and saved for offline sorting. Extracted spikes were semi-automatically sorted 
using Plexon Offline Sorted (Plexon Inc.), and then manually sorted by two raters (BWC and 
MA).  
 
Experimental setup 
The animals completed the task while seated in front of a computer monitor (27” ASUS 
VG278H monitor, 1024x768 pixel resolution at a 75�Hz refresh rate) and used a two-axis 
joystick to freely navigate through the virtual environment. They were placed in a 
radiofrequency shielded dark room, with cables entering the room through a small aperture. The 
monkeys’ head position was fixed during the task, and eye position was recorded using video-
oculography at a sampling rate of 500Hz (EyeLink 1000, SR Research). Custom software was 
used to simultaneously control and record the stimulus presentation, behavioral response, eye 
position and reward dispense (Figure 1a).  
 
Behavioral tasks 
The learning task was completed in an X-shaped maze as previously described (Corrigan et al., 
2022; Doucet et al., 2016; Gulli et al., 2020). In each trial, animals start at one end of the X-maze 
and navigate towards the corridor using a joystick. Once they enter the corridor, the walls change 
their texture to either a wood or steel texture. As they continue navigating towards the end of the 
corridor, two different colored discs appear at each end of the X-maze. One wall texture (the 
context) is associated with one color (e.g., steel means the target is green, and wood means the 
target is red) indicating the monkeys to navigate to the corresponding disc to obtain a juice 
reward. The monkey then turns around to navigate back towards the other end of the maze 
initiating another trial. Figure 1c demonstrates the trajectory of an example trial. 

Each day, monkeys completed a set of trials with a fixed context-color combination, 
which associated the steel context with the orange target, and the wood context with the purple 
target. Following this fixed combination, two different colors are pseudo-randomly chosen to be 
associated with each context. Therefore, the monkeys must learn a new association for each 
session. For a given trial, the colors can appear in one of two possible configurations, referred to 
as color pair order (CPO). Figure 1d demonstrates the different possible task elements for each 
session: context, CPO and target side. For a given trial, the context and CPO are chosen 
randomly.  
 
Behavioral analysis 
For each session, learning was estimated using a state-space analysis based on all completed 
trials as previously described (Ravassard et al., 2013). A learning state with a 95% confidence 
interval is estimated across all completed trials, as illustrated in Figure 1e. Learning of the 
association is defined as the 2.5th percentile of the learning state’s confidence interval exceeding 
50%. 
 
Single neuron tuning 
Single neuron tuning over task epochs was computed by calculating the mean firing rate (FR) 
over 1200ms, from -200ms to 1000ms around the trial’s epoch. Each unit’s mean FR was z-
scored across all trials. Given a limited number of incorrect trials, only correct trials were used. 
We fit each neuron’s normalized FR to each feature using a multivariate linear regression 
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(equation 1), with significance to each feature determined by setting an alpha of 0.05. The total 
proportions of neurons tuned to task features were compared across the dorsal and ventral LPFC 
using a chi-square test. 

 
Equation 1 

�� �  �� �  ����	
��
�� � ������� � ��������� ����� �  � 
 

In the model context is the wall color (2 values: wood or steel), CPO is color pair order, 
the color combination order (2 values: color1 left and color2 right and vice versa), and target 
side is the location of the target in egocentric space (left or right). To investigate neuron tuning to 
features over the task epoch, we calculated for each unit the mean FR over 400ms windows with 
20ms overlap. This was calculated from -400ms (-200ms to -600ms) to 800ms (600ms to 
1000ms) around the goal onset. Each unit’s mean firing (FR) rate z-scored across all trials and 
tuning to task features was determine using a multivariate linear regression (Equation 1). We 
perform this analysis with an alpha threshold of 0.05, 0.01 and 0.001. A given unit was defined 
as being tuned to a feature if it remained tuned for at least five consecutive 20ms sliding 
windows (i.e. across 100ms). The latency for a given unit’s tuning was determined as the first 
time-window it was significantly tuned to a given feature. The total number of tuned units for 
each time-window were summed for each feature, and a significant proportion of neurons was 
determined if the total proportion exceeded the alpha threshold set. Individual neuron tuning 
latencies were compared for different task features using a Wilcoxon rank sum test.  

Eye position was unrestrained. To control for eye position, we performed a two-step 
multivariate linear regression (Equations 2 and 3). We first calculate the mean x and y eye 
position in the same 400ms windows we used to analyze the neural data. We fit each unit’s 
normalized FR to the mean x and y eye position, and their interaction to account for neural 
activity specific to a particular position on the screen (Equation 2). We then utilize the residual 
FR data, representing the neural activity not accounted for by eye position, to fit a second 
multivariate linear regression with task-dependent features (equation 3).  

 
Equation 2 

�� �  �� � �������� � �������� �  �������������� �  ��� 
 

Equation 3 
��� �  �� � ����	
��
�� � ������� �  ��������� �����  �  � 

 
Decoding from Population Neural Activity 
We used a linear support vector machine (SVM) to decode task-dependent features from 
neuronal population activity in single trials in 400ms windows. We initially used only correct 
trials, with four possible conditions. We utilized the fitcsvm function (MATLAB 2020a) using a 
five-fold cross validation on normalized FRs. Sessions were analyzed separately, and only 
sessions with at least 15 trials per condition were used. For each session, 15 trials for each 
condition were randomly chosen and stratified into five folds with one-fold used for testing. This 
procedure was repeated 100 times, with 500 trained classifiers. In individual sessions, 
significance was determined by permutation testing, with the previous procedure performed on 
shuffled trials. Trials were shuffled after the k-fold stratification, and this procedure was repeated 
100 times, with 500 classifiers. In individual sessions, significance was determined by a mean 
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accuracy exceeding the 97.5th percentile chance accuracy. We performed the above analysis on 
normalized FRs from sorted neurons and normalized multiunit activity across each channel.  
 To control for possible biases in eye position that may affect neural activity we sought to 
quantify the classification accuracy of task-features from eye position. We calculated the mean x 
and y eye position across the same 400ms windows as previously described. A linear SVM was 
used to classify task-features from x and y eye position on the same randomly selected and 
stratified trials used for the neural data. This was repeated 100 times, generating 500 classifiers. 
Permutation testing as described above was used for significance testing in individual sessions. 
The mean decoding accuracies (with standard errors) of task features were calculated across 
sessions. Decoding accuracies were compared across sessions using the dorsal and ventral 
LPFC’s neural data and eye position at three 400ms windows (centered at 0ms 400ms and 
800ms) using Wilcoxon sign rank tests. 

 
Cross-temporal Decoding Analysis 
Cross-temporal decoding was performed to investigate whether the neural code underlying task 
features was persistent or dynamic across the goal onset epoch. We calculated the mean FR 
across 400ms windows overlapped by 20ms, and randomly selected trials which were stratified 
in five k-folds. This was performed from -400ms to 1000ms around the goal onset, with 70 
separate time-windows. A linear SVM was used to generate a model on 4 k-folds at each time-
window and tested on the same remaining k-fold across all 400ms time-windows (70 time 
windows). This procedure was then repeated 100 times, resulting in 35 000 separate models (70 
x 5 x 100). The mean decoding accuracy across sessions (with the standard error) was calculated, 
and significance was determined when the bottom 2.5th percentile decoding accuracy exceeded 
chance performance. Cross-temporal decoding analysis was statistically compared across models 
trained at three time windows (centered at 0ms, 400ms and 800ms) around goal onset using a 
Wilcoxon sign rank test.  
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Figure Captions 
 
Figure 1. Recordings from NPH LPFC during a virtual navigation associative memory 
task. a) Monkeys were seated in front of a monitor and used a joystick to navigate through the 
virtual reality maze to complete the associative memory task. b) Location of implanted Utah 
microelectrode arrays, placed in the dorsal (areas 9/46d) and ventral (area 9/46v) lateral 
prefrontal cortex c) Overview of X-maze, with an example path taken during one trial, with the 
onset of the context (walls changing to steel or wood) and goal (two possible colors per session 
appearing in a random order) indicated. d) All possible task conditions, with context, color pair 
order (CPO) and target side. e) Estimated learning state in both monkeys with 95% confidence 
interval in example sessions with a novel context-association. f) Mean firing rate over 400ms in 
example neurons tuned to task features during goal onset, tuned to steel (above), right (middle) 
and mixed selectivity (bottom). 
 
 
 
Figure 2. LPFC neurons are tuned to task features during virtual navigation. Proportion of 
neurons tuned to task features during the context onset and goal onset epochs, using a 
multivariate linear regression over the mean normalized firing rate of each neuron over 1200ms 
(-200ms to 1000ms) around each epoch for both monkeys. An alpha of 0.05 was used to 
determine neuron tuning.  
 
 
 
Figure 3 LPFC neurons temporally mix task features during virtual navigation. a) Neuron 
tuning to task features during goal onset over 400ms windows overlapped by 20ms, performed 
separately across the ventral and dorsal PFC for each monkey. Top plots demonstrate the total 
number of neurons tuned to task features, with the points above indicating a proportion of units 
tuned above 0.05 (see Figure S1 for results with an alpha of 0.01 and 0.001). Bottom plots 
represent each unit’s tuning over time, sorted from bottom to top by onset of tuning to any 
feature. b) Latencies of all neurons tuned to task features in the ventral and dorsal PFC across 
both monkeys, with latencies compared using a Wilcoxon rank test, ns p>0.05, * p<0.05, *** 
p<0.001. c) Proportion of neurons tuned to different features over the 1200ms (-200ms to 
1000ms) time-window around goal onset. 
 
 
 
Figure 4. Decoding task features of ventral and dorsal LFPC neuronal ensembles across 
individual sessions. a) Mean decoding accuracies of task features across 12 sessions (monkey B) 
and 8 sessions (monkey T) over 400ms windows overlapped by 20ms. This was performed 
separately for neural activity in the dorsal and ventral LPFC (mean and normalized multiunit 
activity), and mean eye position (mean x and y positions) over the same time epochs. Plots show 
mean (±2SE) decoding accuracy across sessions, with a circle above when the lower bound 
(mean – 2SE) exceeds chance performance. b) Comparing decoding accuracy across the ventral 
LPFC, dorsal LPFC and eye position using a Wilcoxon sign rank test, ns p>0.05, * p<0.05, ** 
p<0.01, *** p<0.001. c) Correlating decoding accuracy of CPO from eye position and neural 
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data 400ms (200ms to 600ms) after goal onset using Spearman’s rank correlation. Decoding 
accuracy of CPO from eye position was highly correlated with accuracy from the dorsal LPFC 
(r(12) = 0.918, p < 0.001), but not from the ventral LPFC (r(12) = -0.329, p = 0.30). 
 
 
 
Figure 5. Task features are fluidly represented by neural ensembles in the ventral LPFC. a) 
Cross-temporal decoding in the ventral LPFC, training a linear SVM on task features across 
400ms windows overlapped by 20ms, and testing each model on 400ms windows overlapped by 
20ms across the whole epoch. Heatmaps show mean decoding accuracies across 8 sessions in 
monkey B and 8 sessions in monkey T. b) Mean (±2SE) decoding accuracy of the task’s context 
across time, when trained at 0ms, 400ms and 800ms. c) Comparing decoding accuracies of 
models trained at 0ms, 400ms and 800ms when testing on different time windows. Decoding 
accuracies were compared using a Wilcoxon sign rank test, ns p>0.05, * p<0.05, ** p<0.01, *** 
p<0.001. 
 
 
 
Figure 6. Temporally mixed single neurons contribute to fluid neural ensembles. 
Correlating each sorted unit’s beta coefficient for context, CPO and side obtained using a 
multivariate linear regression as previously described (Figure 3), to each unit’s beta coefficient 
as assigned by a linear SVM classifying context, CPO and target side at different times. 
Correlation was assessed using a Spearman rank correlation, with rho and p-values presented.  
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Supplementary Figure Captions 
 
Figure S1. Tuning of LPFC neurons using different alpha thresholds and correcting for eye 
position. a) Proportion of neurons tuned to task features during goal onset over 400ms windows 
overlapped by 20ms, using different alpha thresholds (0.01 and 0.001). The points above 
indicating the proportion of units tuned above the expected number tuned by chance based on the 
alpha set. b) Neuron tuning to task features during goal onset over 400ms windows overlapped 
by 20ms, after removing eye position related information using a multi-step multivariate linear 
regression. Total proportion of neurons tuned plotted above, with points above indicating a 
proportion of units tuned above the alpha set (0.05). 
 
 
 
Figure S2. Examining mean eye position in select sessions across both monkeys. a) Mean 
horizontal eye position over running 400ms windows overlapped by 20ms across task conditions 
with a 95% confidence interval shaded, for individual select sessions. Sessions B3 and B5 were 
selected for monkey B as they sessions had the most and least eye-position bias for task features 
respectively, and session T5 is shown as this session had the most trials in monkey T. b) 
Decoding accuracies of task features using mean x and y eye position over 400ms in individual 
sessions shown above, with the shaded gray area demonstrating the 95% confidence interval 
obtained by shuffling the labels. Chosen side can be decoded above chance level in all sessions 
as the monkeys fixated on the target side. Session B3 demonstrates robust decoding of Color Pair 
Order, as monkey B had a preference to fixate on the cyan color (and therefore was looking in a 
different direction depending on the color order). However, monkey B did not have a color 
preference in session B5 and therefore Color Pair Order could not be decoded above as robustly 
in this session. Monkey T did not demonstrate a similar bias for visual task features, and in fact 
did not reliably fixate on the target side in all trials. 
 
 
 
Figure S3. Decoding task features from individual sessions. Mean decoding accuracy of task 
features in individual sessions with at least 30 trials in each condition, with the shaded gray area 
representing the 95% confidence interval obtained with permutation testing. 
 
 
 
Figure S4. Decoding task features using manually sorted single units and multiunit activity. 
Mean decoding accuracy (±2SE) of task features using normalized sorted single neuron spikes 
(left) and multi-unit activity across each channel (right), over 400ms time windows overlapped 
by 20ms. Decoding accuracies were statistically compared at 0ms, 400ms and 800ms using a 
Wilcoxon rank sum test, with no statistical difference observed between manually sorted single 
units and multiunit activity.  
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Figure S5. Decoding accuracies of task features between neural data from the dorsal and 
ventral LPFC and eye position. Decoding accuracies of task features by the dorsal PFC, ventral 
PFC and eye position compared at three time windows (centered at 0ms, 400ms and 800ms). 
Decoding accuracies across sessions were compared using a Wilcoxon sign rank test, ns p>0.05, 
* p<0.05, ** p<0.01, *** p<0.001. 
 
 
 
Figure S6. Cross-temporal decoding from the dorsal and ventral LPFC performed in 
Monkey B. a) Heatmap representing cross-temporal decoding accuracies, with a linear SVM 
trained in 400ms intervals overlapped by 20ms, and tested at all other 400ms windows. b) Mean 
decoding accuracy over testing time when training at 0ms, 400ms and 800ms. c. Comparing 
decoding accuracies of models trained at 0ms, 400ms and 800ms when testing on different time 
windows, using a Wilcoxon sign rank test, ns p>0.05, * p<0.05, ** p<0.01, *** p<0.001. 
 
 
 
Figure S7. Cross-temporal decoding from the dorsal and ventral LPFC performed in 
Monkey T. Cross-temporal decoding in monkey T a. Heatmap representing cross-temporal 
decoding accuracies, with a linear SVM trained in 400ms intervals overlapped by 20ms, and 
tested at all other 400ms windows. b. Mean decoding accuracy over testing time when training at 
0ms, 400ms and 800ms. c. Comparing decoding accuracies of models trained at 0ms, 400ms and 
800ms when testing on different time windows, using a Wilcoxon sign rank test, ns p>0.05, * 
p<0.05, ** p<0.01, *** p<0.001. 
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